
// Smart Contract Security Assessment 11.25.2024 - 11.25.2024

harvestRewards
Function
Improvements
Concrete

h a r ve st Rewa r d s F u n c t i o n I m p r ove m e n t s - C o n c r e t e

Prepared by: HALBORN

Last Updated 01/15/2025

Date of Engagement by: November 25th, 2024 - November 25th, 2024

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS

7

CRITICAL

0

HIGH

0

MEDIUM

0

LOW

2

INFORMATIONAL

5

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Division by zero not prevented
7.2 Incomplete tests and natspec documentation
7.3 Cache array length outside of loop
7.4 Incorrect order of modifiers: nonreentrant should precede all other modifiers
7.5 Use calldata for function arguments not mutated
7.6 Harvestrewards missing in the related interface
7.7 Style and optimization improvements in harvestrewards

8. Automated Testing

1 0 0%

1 . I n t r o d u c t i o n

Concrete engaged Halborn to conduct a security assessment for their updated harvestRewards()
function of the sc_earn-v1 project beginning on November 25th and ending on the same day. The
security assessment was scoped to the smart contracts provided in the repository sc_earn-v1.

Commit hash and further details can be found in the Scope section of this report.

2. A s s e s s m e n t S u m m a r y

Halborn was provided 1 day for the engagement and assigned one full-time security engineer to review
the security of the smart contract in scope. The engineer is a blockchain and smart contract security
expert with advanced penetration testing and smart contract hacking skills, and deep knowledge of
multiple blockchain protocols.

The purpose of the assessment is to:

Identify potential security issues within the smart contracts.
Ensure that smart contract functionality operates as intended.

In summary, Halborn identified some improvements to reduce the likelihood and impact of risks, that
were mostly addressed by the Concrete team. The main ones were as follows:

Ensure division by zero protection.
Expand tests and improve the NatSpec documentation.

https://github.com/Blueprint-Finance/sc_earn-v1/

3. Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of manual and automated security testing to balance efficiency,
timeliness, practicality, and accuracy in regard to the scope of this assessment. While manual testing is
recommended to uncover flaws in logic, process, and implementation; automated testing techniques help
enhance coverage of the code and can quickly identify items that do not follow the security best
practices. The following phases and associated tools were used during the assessment:

Research into architecture and purpose.
Smart contract manual code review and walkthrough.
Graphing out functionality and contract logic/connectivity/functions (solgraph).
Manual assessment of use and safety for the critical Solidity variables and functions in scope to

identify any arithmetic related vulnerability classes.
Manual testing by custom scripts.
Static Analysis of security for scoped contract, and imported functions (slither).
Testnet deployment (Foundry).

4. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity
Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means
by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

4.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory
challenges.

M E T R I C S :

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

M ​E

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

M ​E

E

E = m ​∏ e

M ​I

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

C

r

s

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

C

C = rs

S

S = min(10,EIC ∗ 10)

5. S C O P E

F ILES AND REPOSITORY

(a) Repository: sc_earn-v1

(b) Assessed Commit ID: b74f503

(c) Items in scope:

src/vault/ConcreteMultiStrategyVault.sol

Out-of-Scope: Functions other than harvestRewards, third party dependencies and economic
attacks.

REMEDIAT ION COMMIT ID :

e76eb12
3ffe5c5

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

0

HIGH

0

MEDIUM

0

LOW

2

INFORMATIONAL

5

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

DIVISION BY ZERO NOT PREVENTED LOW SOLVED - 12/12/2024

INCOMPLETE TESTS AND NATSPEC DOCUMENTATION LOW
RISK ACCEPTED -

01/13/2025

https://github.com/Blueprint-Finance/sc_earn-v1
https://github.com/Blueprint-Finance/sc_earn-v1/commit/e76eb12ef74debbc695c936c271c8cccff7e81d6
https://github.com/Blueprint-Finance/sc_earn-v1/commit/3ffe5c52ca1e2c3228a63ff5ad5b2157f74eb0a6

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

CACHE ARRAY LENGTH OUTSIDE OF LOOP INFORMATIONAL SOLVED - 01/10/2025

INCORRECT ORDER OF MODIFIERS: NONREENTRANT
SHOULD PRECEDE ALL OTHER MODIFIERS

INFORMATIONAL SOLVED - 01/10/2025

USE CALLDATA FOR FUNCTION ARGUMENTS NOT
MUTATED

INFORMATIONAL SOLVED - 01/10/2025

HARVESTREWARDS MISSING IN THE RELATED
INTERFACE

INFORMATIONAL SOLVED - 12/12/2024

STYLE AND OPTIMIZATION IMPROVEMENTS IN
HARVESTREWARDS

INFORMATIONAL
ACKNOWLEDGED -

01/13/2025

7. F I N D I N G S & T EC H D E TA I L S

7.1 D I V I S I O N BY Z E RO N OT P R EV E N T E D

// LOW

Description
The function in scope harvestRewards(), fails to account for division by zero scenarios, which can cause
the contract to revert unexpectedly. This introduces a risk of denial of service in edge cases, leading to
contract failures during harvest calculations:

functionfunction harvestRewardsharvestRewards((bytesbytes memorymemory encodedData encodedData)) externalexternal onlyOwner nonReen onlyOwner nonReen

 uint256uint256 totalSupply totalSupply == totalSupplytotalSupply(());;

 rewardIndex rewardIndex[[rewardTokenrewardToken]] +=+= amount amount..mulDivmulDiv((PRECISIONPRECISION,, totalSupply totalSupply

}}

When totalSupply() returns 0, this will result in a division by zero, reverting the contract.

BVSS

AO:A/AC:L/AX:L/C:N/I:L/A:L/D:N/Y:N/R:N/S:C (3.9)

Recommendation
Introduce validation checks for critical values to ensure they are non-zero before performing any division
operations.

Remediation

SOLVED: The Concrete team fixed this finding in commit e76eb12 by including zero validation checks, as
recommended.

Remediation Hash
https://github.com/Blueprint-Finance/sc_earn-v1/commit/e76eb12ef74debbc695c936c271c8cccff7e81
d6

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:L/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:L/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:L/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:L/D:N/Y:N/R:N/S:C
https://github.com/Blueprint-Finance/sc_earn-v1/commit/e76eb12ef74debbc695c936c271c8cccff7e81d6
https://github.com/Blueprint-Finance/sc_earn-v1/commit/e76eb12ef74debbc695c936c271c8cccff7e81d6

7. 2 I N C O M P L E T E T ESTS A N D N ATS P EC D O C U M E N TAT I O N

// LOW

Description
The security assessment revealed that the harvestRewards() function lacks proper test coverage,
which poses significant risks to the reliability and security of the functionality. Without complete tests, it
is impossible to verify that the function works as intended or to identify potential vulnerabilities and edge
cases.

Additionally, the functions exhibit incomplete NatSpec documentation. This lack of comprehensive
documentation can lead to misunderstandings during development and maintenance, potentially
resulting in the misinterpretation of the functionality or use. More specifically, the tests were only
invoking harvestRewards() with the argument encodedData set as "", and the NatSpec was missing the
@param directive.

Comprehensive test coverage and clear NatSpec documentation are essential for ensuring smart
contract quality, maintainability, and safety.

BVSS

AO:A/AC:L/AX:L/C:N/I:L/A:M/D:M/Y:M/R:F/S:U (2.0)

Recommendation
The following recommendations are suggested:

Improve the Test Cases: Develop and integrate a complete test suite to validate all functionalities and
scenarios for the given function. Proper testing helps identify bugs, verify expected behaviors, and
provide assurance of function security.

Update NatSpec Documentation: Ensure that all details are fully documented with complete NatSpec
annotations. Detailed documentation assists developers in understanding the code's purpose and
parameters, facilitating future maintenance and auditing efforts.

Addressing these issues will significantly enhance the function's reliability, maintainability, and overall
quality.

Remediation

RISK ACCEPTED: The Concrete team accepted the risk of this finding.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:M/D:M/Y:M/R:F/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:M/D:M/Y:M/R:F/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:M/D:M/Y:M/R:F/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:M/D:M/Y:M/R:F/S:U

7. 3 CAC H E A R R AY L E N GT H O U TS I D E O F LO O P

// INFORMATIONAL

Description
When the length of an array is not cached outside of a loop, the Solidity compiler reads the length of the
array during each iteration. For storage arrays, this results in an extra sload operation (100 additional
gas for each iteration except the first). For memory arrays, this results in an extra mload operation (3
additional gas for each iteration except the first).

Detecting loops that use the length member of a storage array in their loop condition without modifying
it can reveal opportunities for optimization.

The loops repeatedly access strategies.length and rewardAddresses.length, which are stored
variables. This results in unnecessary gas consumption as the values are reloaded from storage in every
iteration. The indices.length is also accessed multiple times; this local variable is stored in memory:

functionfunction harvestRewardsharvestRewards((bytesbytes calldatacalldata encodedData encodedData)) externalexternal onlyOwner nonRe onlyOwner nonRe
 uint256uint256[[]] memorymemory indices indices;;

 forfor ((uint256uint256 i i;; i i << strategies strategies..lengthlength;;)) {{

 forfor ((uint256uint256 k k == 00;; k k << indices indices..lengthlength;; k k++++)) {{

 }}

 forfor ((uint256uint256 j j;; j j << returnedRewards returnedRewards..lengthlength;;)) {{

 }}
 }}

}}

BVSS

AO:S/AC:L/AX:L/C:N/I:L/A:L/D:N/Y:N/R:F/S:U (0.2)

Recommendation
Cache the length of the array in a local variable outside the loop to optimize gas usage. This reduces the
number of read operations required during each iteration of the loop. See the example fixes below:

functionfunction harvestRewardsharvestRewards((bytesbytes calldatacalldata encodedData encodedData)) externalexternal onlyOwner nonRe onlyOwner nonRe
 uint256uint256[[]] memorymemory indices indices;;

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:L/A:L/D:N/Y:N/R:F/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:L/A:L/D:N/Y:N/R:F/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:L/A:L/D:N/Y:N/R:F/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:L/A:L/D:N/Y:N/R:F/S:U

 uint256uint256 indicesLength indicesLength == indices indices..lengthlength;;
 uint256uint256 strategiesLength strategiesLength == strategies strategies..lengthlength;;
 forfor ((uint256uint256 i i == 00;; i i << strategiesLength strategiesLength;; i i++++)) {{

 forfor ((uint256uint256 j j == 00;; j j << indicesLength indicesLength;; j j++++)) {{

 }}

 uint256uint256 returnedRewardsLength returnedRewardsLength == returnedRewards returnedRewards..lengthlength;;
 forfor ((uint256uint256 k k == 00;; k k << returnedRewardsLength returnedRewardsLength;; k k++++)) {{

 }}
 }}

}}

Remediation

SOLVED: The Concrete team fixed this finding in commit 3ffe5c5 by caching the length of arrays before
entering the loop, as recommended.

Remediation Hash
https://github.com/Blueprint-Finance/sc_earn-v1/commit/3ffe5c52ca1e2c3228a63ff5ad5b2157f74eb0
a6

https://github.com/Blueprint-Finance/sc_earn-v1/commit/3ffe5c52ca1e2c3228a63ff5ad5b2157f74eb0a6
https://github.com/Blueprint-Finance/sc_earn-v1/commit/3ffe5c52ca1e2c3228a63ff5ad5b2157f74eb0a6

7. 4 I N C O R R EC T O R D E R O F M O D I F I E RS : N O N R E E N T R A N T

S H O U L D P R EC E D E A L L OT H E R M O D I F I E RS

// INFORMATIONAL

Description
To mitigate the risk of reentrancy attacks, a modifier named nonReentrant is commonly used. This
modifier acts as a lock, ensuring that a function cannot be called recursively while it is still in execution.
A typical implementation of the nonReentrant modifier locks the function at the beginning and unlocks it
at the end. However, it is critical to place the nonReentrant modifier before all other modifiers in a
function. Placing it first ensures that all other modifiers cannot bypass the reentrancy protection. In the
current implementation, some functions use other modifiers before nonReentrant, which compromises
the protection it provides.

In the harvestRewards() function in scope, the nonReentrant is placed after another modifier call, a
reentrancy attack could potentially bypass the lock and manipulate the contract by exploiting the
privileges of the owner:

functionfunction harvestRewardsharvestRewards((bytesbytes memorymemory encodedData encodedData)) externalexternal onlyOwner nonReen onlyOwner nonReen

The risk of this finding was decreased to informational risk after reviewing that the onlyOwner
modifier of the harvestRewards() function is not interacting with other addresses.

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation
By following the best practice of placing the nonReentrant modifier before all other modifiers, one can
significantly reduce the risk of reentrancy-related vulnerabilities. This is simple yet effective approach
can help augment the security posture of any Solidity smart contract.

Remediation

SOLVED: The Concrete team fixed this finding in commit 3ffe5c5 by placing the nonReentrant modifier
before all other modifiers as recommended.

Remediation Hash
https://github.com/Blueprint-Finance/sc_earn-v1/commit/3ffe5c52ca1e2c3228a63ff5ad5b2157f74eb0
a6

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://github.com/Blueprint-Finance/sc_earn-v1/commit/3ffe5c52ca1e2c3228a63ff5ad5b2157f74eb0a6
https://github.com/Blueprint-Finance/sc_earn-v1/commit/3ffe5c52ca1e2c3228a63ff5ad5b2157f74eb0a6

7. 5 U S E CA L L DATA FO R F U N C T I O N A RG U M E N TS N OT

M U TAT E D

// INFORMATIONAL

Description
The function in scope, harvestRewards(), receives the argument encodedData as a memory array, even
though the array is not mutated in the external function itself. This results in unnecessary gas overhead
when copying data from calldata to memory during the abi.decode() process.

Using calldata directly for such arguments bypasses the copying loop, reducing gas costs, especially for
larger arrays.

Optimizing harvestRewards() to accept the encodedData array as calldata instead of memory can
reduce gas costs for external calls. The savings grow with the size of the input array.

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation
Consider updating the function signatures as follows:

functionfunction harvestRewardsharvestRewards((bytesbytes calldatacalldata encodedData encodedData)) externalexternal onlyOwner nonRe onlyOwner nonRe

By switching the argument type to calldata, the encodedData array is read directly from the
transaction's calldata, eliminating unnecessary memory allocations and reducing gas costs.

Remediation

SOLVED: The Concrete team fixed this finding in commit 3ffe5c5 by updating the function's signature as
recommended.

Remediation Hash
https://github.com/Blueprint-Finance/sc_earn-v1/commit/3ffe5c52ca1e2c3228a63ff5ad5b2157f74eb0
a6

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://github.com/Blueprint-Finance/sc_earn-v1/commit/3ffe5c52ca1e2c3228a63ff5ad5b2157f74eb0a6
https://github.com/Blueprint-Finance/sc_earn-v1/commit/3ffe5c52ca1e2c3228a63ff5ad5b2157f74eb0a6

7. 6 H A RV EST R E WA R D S M I S S I N G I N T H E R E L AT E D

I N T E R FAC E

// INFORMATIONAL

Description
The harvestRewards() function, which is the focus of this assessment, is not defined in the
IConcreteMultiStrategyVault interface. This absence can lead to discrepancies in the expected
functionality and usage of the contract, especially when integrating with other systems or interacting
with the vault through the defined interface. Interfaces are crucial for establishing clear expectations of
functionality, and omitting key functions can hinder usability and auditability.

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation
Include the harvestRewards() function in the IConcreteMultiStrategyVault interface. This will ensure
consistency between the contract implementation and its defined interface, facilitating smoother
integration and clearer expectations for external developers and auditors.

Remediation

SOLVED: The Concrete team fixed this finding in commit e76eb12 by Including the harvestRewards()
function in the IConcreteMultiStrategyVault interface as recommended.

Remediation Hash
https://github.com/Blueprint-Finance/sc_earn-v1/commit/e76eb12ef74debbc695c936c271c8cccff7e81
d6

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://github.com/Blueprint-Finance/sc_earn-v1/commit/e76eb12ef74debbc695c936c271c8cccff7e81d6
https://github.com/Blueprint-Finance/sc_earn-v1/commit/e76eb12ef74debbc695c936c271c8cccff7e81d6

7.7 ST Y L E A N D O P T I M I Z AT I O N I M P ROV E M E N TS I N

H A RV EST R E WA R D S

// INFORMATIONAL

Description
During the security assessment of the harvestRewards() function, several areas were identified where
code consistency, readability, and efficiency could be improved. These issues, while not direct
vulnerabilities, impact maintainability, potential future integrations, and developer understanding of the
contract. Addressing these issues would enhance the robustness of the contract and reduce the
likelihood of errors in future modifications.

Inconsistent Loop Variable Naming

The function uses inconsistent variable names for loop counters (i, k, j), which do not follow a logical
progression or indicate distinct roles (i, j, k).

This inconsistency reduces readability and increases cognitive load for auditors and developers trying
to follow the code logic.

Inconsistent Increment Patterns

The outer loop (i) and the innermost loop (j) use manual increments (unchecked { i++; }), while the
second loop (k) uses the standard for declaration (for (uint256 k = 0; k < indices.length; k++)).

This inconsistency in loop increment patterns is unnecessary and detracts from code clarity.

Lack of Explicit Documentation for Complex Logic

The nested logic for processing indices and data is not clearly documented, which can confuse
developers and auditors about the intended behavior and purpose.

For example, the conditions and assignments for rewardsData are non-intuitive and lack explanation
about their purpose.

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation
To address the optimizations mentioned in the description, consider following the next recommendations:

Inconsistent Loop Variable Naming: Use ordered loop variable names, such as i, j and k. Or even
consider using descriptive variable names (e.g., strategyIndex, rewardIndex) to clarify their roles.

Inconsistent Increment Patterns: Since the code targets Solidity 0.8.24, leverage the new Solidity
0.8.22 optimization where the compiler automatically handles unchecked arithmetic in for-loop
counters. Therefore, avoid manual increments inside the loop body.

Lack of Explicit Documentation for Complex Logic: add inline comments or function-level
documentation explaining the logic and assumptions around indices and data processing.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C

Remediation

ACKNOWLEDGED: The Concrete team acknowledged this finding by leaving the unordered loop variables,
manual increments and lack of explicit documentation.

8 . AU TO M AT E D T EST I N G

STATIC ANALYSIS REPORT

D e s c r i p t i o n

Halborn used automated testing techniques to enhance the coverage of certain areas of the smart
contracts in scope. Among the tools used was Slither, a Solidity static analysis framework. After Halborn
verified the smart contracts in the repository and was able to compile them correctly into their abis and
binary format, Slither was run against the contracts. This tool can statically verify mathematical
relationships between Solidity variables to detect invalid or inconsistent usage of the contracts' APIs
across the entire code-base.

All issues identified by Slither were proved to be false positives or have been added to the issue list in
this report.

O u t p u t

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

