
Prepared for
Nicholas Roberts-Huntley
Blueprint Finance

Prepared by
Qingying Jie
Weipeng Lai
Zellic

June 19, 2025

Concrete
Smart Contract Security Assessment

Concrete Smart Contract Security Assessment June 19, 2025

Contents About Zellic 5

1. Overview 5

1.1. Executive Summary 6

1.2. Goals of the Assessment 6

1.3. Non-goals and Limitations 6

1.4. Results 6

2. Introduction 7

2.1. About Concrete 8

2.2. Methodology 8

2.3. Scope 10

2.4. Project Overview 11

2.5. Project Timeline 11

3. Detailed Findings 11

3.1. Incorrect performance-fee calculation can lead to a denial-of-service condition 12

3.2. Unhandled code path in WithdrawalQueueHelper._withdrawStrategyFunds
could result in users receiving less assets than they are entitled to 15

3.3. Potential underflow in MorphoVaultStrategy._protocolWithdraw could lead to
withdrawal failure 19

3.4. The feesUpdatedAt state variable is used before initialization 21

3.5. The protectStrategy state variable is not updated during emergencyRemoveS-
trategy call 24

3.6. Incorrect L2 sequencer uptime feed integration 26

Zellic © 2025 ← Back to Contents Page 2 of 75

Concrete Smart Contract Security Assessment June 19, 2025

3.7. Unclaimedwithdrawal requestsmay be incorrectly finalized 28

3.8. Incorrect swap logic in _protocolWithdraw 31

3.9. The VaultManager contract lacks the code to call the function emergencyRe-
moveStrategy 34

3.10. Incorrect transfer amount in the function rescueFunds 35

3.11. The function redeem lacks dust-amount check 37

3.12. Inconsistent handling of infinite allowance in _withdraw 38

3.13. Lack of support for the 0.01% fee tier for swaps inMorphoVaultStrategy 40

3.14. Function getAvailableAssetsForWithdrawal should return zero when with-
drawEnabled is false 42

3.15. Function changeAllocations does not check vaultIdle status before redis-
tributing assets 44

3.16. Incorrect rounding direction in previewMint 46

3.17. The fees charged to the feeRecipient are inconsistent between functions de-
posit and mint 48

3.18. The BTCLinkedPriceFeed contract does not initialize the owner 50

3.19. Insufficient validation of _requestId 51

3.20. Unchecked return value in setParkingLot 53

3.21. Incorrect withdrawable check in _withdrawStrategyFunds 55

3.22. ConcreteMultiStrategy should inherit from ReentrancyGuardUpgradeable in-
stead of ReentrancyGuard 58

3.23. Incorrect implementation of max functions in ConcreteMultiStrategy 59

3.24. Strategy rewards accrue after the share price has been calculated 61

3.25. Incorrect use of the function _getRewardTokens to initialize the rewardTokens 63

Zellic © 2025 ← Back to Contents Page 3 of 75

Concrete Smart Contract Security Assessment June 19, 2025

4. Discussion 64

4.1. The ConcreteOracle.getAssetPrice should ensure the returned price uses
eight decimals 65

4.2. Unused _decimals variable in strategies 66

4.3. Test suite 66

5. SystemDesign 67

5.1. Component: Controller 68

5.2. Component: ConcreteMultiStrategyVault 69

5.3. Component: Withdrawal 72

5.4. Component: Strategies 73

6. Assessment Results 74

6.1. Disclaimer 75

Zellic © 2025 ← Back to Contents Page 4 of 75

Concrete Smart Contract Security Assessment June 19, 2025

About Zellic Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, andmore.

Prior to Zellic, we founded the #1 CTF (competitive hacking) team ↗ worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

FormoreonZellic’s ongoing security research initiatives, checkout ourwebsite zellic.io ↗ and follow
@zellic_io ↗ on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io ↗.

Zellic © 2025 ← Back to Contents Page 5 of 75

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

Concrete Smart Contract Security Assessment June 19, 2025

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for Blueprint Finance from May 16th to June 6th, 2025.
During this engagement, Zellic reviewedConcrete's code for security vulnerabilities, design issues,
and general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• Are there any vulnerabilities that could result in the loss of user funds?
• Are there anymissing access controls on critical functions?
• Can an attackermanipulate share-price calculations to steal funds?
• Can reward calculations bemanipulated to receivemore rewards?
• Can the high water mark bemanipulated to affect performance fees?

1.3. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• Strategies not listed in the Scope section
• Front-end components
• Infrastructure relating to the project
• Key custody

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

1.4. Results

During our assessment on the scoped Concrete contracts, we discovered 25 findings. No critical
issues were found. Two findings were of high impact, six were of medium impact, eight were of low
impact, and the remaining findings were informational in nature.

Additionally, Zellic recorded its notes and observations from the assessment for the benefit of
Blueprint Finance in the Discussion section (4. ↗).

Zellic © 2025 ← Back to Contents Page 6 of 75

Concrete Smart Contract Security Assessment June 19, 2025

Based on the high number of findings uncovered during the audit, it is our opinion that the project is
notyet ready forproduction. Westronglyadviseacomprehensive reassessmentbeforedeployment
to help identify any potential issues or vulnerabilities introduced by necessary fixes or changes.
We also recommend adopting a security-focused development workflow, including (but not limited
to) augmenting the repository with comprehensive end-to-end tests that achieve 100% branch
coverage using any common,maintainable testing framework, thoroughly documenting all function
requirements, and training developers to have a security mindset while writing code.

Breakdown of Finding Impacts

Impact Level Count

■ Critical 0

■ High 2

■ Medium 6

■ Low 8

■ Informational 9

Zellic © 2025 ← Back to Contents Page 7 of 75

Concrete Smart Contract Security Assessment June 19, 2025

2. Introduction 2.1. About Concrete

Blueprint Finance contributed the following description of Concrete:

Concrete is the DeFi Liquidity Metalayer — powering the highest yields and unlocking new
derivatives for any on-chain asset.

Concrete offers a one-stop solution that automates everything from yield optimization to liq-
uidation protection. Handling the research, security, and optimization while giving users the
best of DeFi without the risks or headaches.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
bothautomated testingandmanual review. Theseprocessescanvarysignificantlyperengagement,
but themajority of the time is spent on a thoroughmanual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic codingmistakes.Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, wemay also employ sophisticated analyzers such asmodel
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with the contracts.

Business logic errors. Business logic is the heart of any smart contract application.
We examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unrealistic
tokenomicsordangerousarbitrageopportunities. To thebestofourabilities, timepermitting,
we also review the contract logic to ensure that the code implements the expected
functionality as specified in the platform's design documents.

Integration risks. Several well-known exploits have not been the result of any bug within
the contract itself; rather, they are an unintended consequence of the contract's interaction
with the broader DeFi ecosystem. Time permitting, we review external interactions and
summarize the associated risks: for example, flash loan attacks, oracle price manipulation,
MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general. We look
for violations of industry best practices and guidelines and code quality standards. We
also provide suggestions for possible optimizations, such as gas optimization, upgradability
weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no

Zellic © 2025 ← Back to Contents Page 8 of 75

Concrete Smart Contract Security Assessment June 19, 2025

hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and
Informational.

Zellic organizes its reports such that themost important findings come first in the document, rather
thanbeing strictly orderedon impact alone. Thus,wemay sometimesemphasize an "Informational"
findinghigher thana "Low"finding. Thekeydistinction is that althoughcertain findingsmayhave the
same impact rating, their importancemay differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or are
not directly related to the scoped contracts itself. These observations — found in the Discussion
(4. ↗) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2025 ← Back to Contents Page 9 of 75

Concrete Smart Contract Security Assessment June 19, 2025

2.3. Scope

The engagement involved a review of the following targets:

Concrete Contracts

Type Solidity

Platform EVM-compatible

Target sc_earn-v1

Repository https://github.com/Blueprint-Finance/sc_earn-v1 ↗

Version c68890cea19b88b3360f306d1f5a37ebb7679f64

Programs registries/*.sol
utils/Constants.sol
managers/*.sol
parking/ParkingLot.sol
strategies/StrategyBase.sol
strategies/Aave/DataTypes.sol
strategies/Aave/AaveV3Strategy.sol
strategies/Morpho/MorphoVaultStrategy.sol
strategies/MultiSigStrat/MultiSigStrategy.sol
libraries/*.sol
vault/ConcreteMultiStrategyVault.sol
vault/ConcreteMultiStrategyVaultUpgradeableV1.sol
queue/WithdrawalQueue.sol
factories/VaultFactory.sol
oracle/BTCLinkedPriceFeed.sol
oracle/OracleFactory.sol
oracle/ConcreteOracle.sol

Zellic © 2025 ← Back to Contents Page 10 of 75

https://github.com/Blueprint-Finance/sc_earn-v1

Concrete Smart Contract Security Assessment June 19, 2025

2.4. Project Overview

Zellicwas contracted to performa security assessment for a total of 4.5 person-weeks. The assess-
ment was conducted by two consultants over the course of 3.2 calendar weeks.

Contact Information

The following project managers were associ-
ated with the engagement:

Jacob Goreski
EngagementManager
jacob@zellic.io ↗

ChadMcDonald
EngagementManager
chad@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Qingying Jie
Engineer
qingying@zellic.io ↗

Weipeng Lai
Engineer
weipeng.lai@zellic.io ↗

2.5. Project Timeline

The key dates of the engagement are detailed below.

May 16, 2025 Start of primary review period

May 20, 2025 Kick-off call

June 6, 2025 End of primary review period

Zellic © 2025 ← Back to Contents Page 11 of 75

mailto:jacob@zellic.io
mailto:chad@zellic.io
mailto:qingying@zellic.io
mailto:weipeng.lai@zellic.io

Concrete Smart Contract Security Assessment June 19, 2025

3. Detailed Findings 3.1. Incorrect performance-fee calculation can lead to a denial-of-service condi-
tion

Target FeesHelper

Category CodingMistakes Severity Critical

Likelihood Medium Impact High

Description

The calculateTieredFee function in the FeesHelper library calculates the performance fee based
on the current price of 1e18 vault shares (shareValue) and the last reached highest price
(highWaterMark). The function incorrectly calculates the fee by dividing by 10 **
underlayingDecimals instead of the shareValue.

function calculateTieredFee(
uint256 shareValue,
uint256 highWaterMark,
uint256 totalAssets,
VaultFees storage fees,
uint256 underlayingDecimals

) public view returns (uint256 fee) {
// [...]

fee = ((shareValue - highWaterMark) * totalAssets).mulDiv(
fees.performanceFee[i].fee, MAX_BASIS_POINTS

* 10 ** underlayingDecimals, Math.Rounding.Floor
);

// [...]
}

}

This error can cause calculateTieredFee to return a fee value that is larger than the vault's
totalAssets. When this happens, the subtraction in _totalAssets - totalFeewithin the
takeFeesmodifier will underflow and cause a revert.

modifier takeFees() {
if (!paused()) {

uint256 totalFee = accruedProtocolFee() + accruedPerformanceFee();
uint256 shareValue = convertToAssets(1e18);
uint256 _totalAssets = totalAssets();

if (shareValue > highWaterMark) highWaterMark = shareValue;

Zellic © 2025 ← Back to Contents Page 12 of 75

Concrete Smart Contract Security Assessment June 19, 2025

if (totalFee > 0 && _totalAssets > 0) {
uint256 supply = totalSupply();
uint256 feeInShare =

supply == 0 ? totalFee : totalFee.mulDiv(supply, _totalAssets
- totalFee, Math.Rounding.Floor);

_mint(feeRecipient, feeInShare);
feesUpdatedAt = block.timestamp;

}
}
_;

}

Because the takeFeesmodifier executes before key user operations — including deposit, mint,
withdraw, and redeem— this vulnerability can place the vault into a permanent denial-of-service
(DOS) state, blocking all core functionality.

Impact

An attacker can trigger this vulnerability by directly transferring assets into the vault, which inflates
the shareValue.

By inflating shareValue sufficiently, an attacker can force calculateTieredFee to return a fee that
exceeds the vault's total assets. This condition will cause the takeFeesmodifier to revert
consistently. As a result, all user-facing functions that use themodifier will be blocked, leading to a
permanent DOS condition and freezing all user funds within the vault.

Recommendations

We recommend correcting the performance-fee calculation in calculateTieredFee. The fee
should be calculated relative to the shareValue to ensure it is always proportional to the actual
profit generated.

fee = ((shareValue - highWaterMark) * totalAssets).mulDiv(

fees.performanceFee[i].fee, MAX_BASIS_POINTS * 10 ** underlayingDecimals,

Math.Rounding.Floor

fees.performanceFee[i].fee, MAX_BASIS_POINTS * shareValue, Math.Rounding.

Floor
);

Zellic © 2025 ← Back to Contents Page 13 of 75

Concrete Smart Contract Security Assessment June 19, 2025

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit
c8e45fa4 ↗.

Zellic © 2025 ← Back to Contents Page 14 of 75

https://github.com/Blueprint-Finance/sc_earn-v1/commit/c8e45fa402a6926fb360bb53014916f3d0417dd1

Concrete Smart Contract Security Assessment June 19, 2025

3.2. Unhandledcodepath inWithdrawalQueueHelper._withdrawStrategyFunds
could result in users receiving less assets than they are entitled to

Target WithdrawalQueueHelper

Category CodingMistakes Severity High

Likelihood Medium Impact High

Description

During a user withdrawal from a Concrete Vault, if the withdrawable amount is sufficient for the
requestedwithdrawal, execution proceeds to the
WithdrawalQueueHelper._withdrawStrategyFunds function:

function processWithdrawal(
uint256 assets_,
address receiver_,
uint256 availableAssets,
address asset,
address withdrawalQueue,
uint256 minQueueRequest,
Strategy[] memory strategies,
IParkingLot parkingLot

) external {
if (availableAssets >= assets_) {

withdrawStrategyFunds(assets, receiver_, asset, strategies,
parkingLot);
} else {

// [...]
}

}

The _withdrawStrategyFunds function first checks the asset balance in the vault contract (float).
If the balance is sufficient for the withdrawal, the function withdraws funds from the balance.
Otherwise, the vault withdraws proportional amounts from the strategies to the user based on the
strategies' allocations:

function _withdrawStrategyFunds(
uint256 amount_,
address receiver_,
address asset_,
Strategy[] memory strategies,

Zellic © 2025 ← Back to Contents Page 15 of 75

Concrete Smart Contract Security Assessment June 19, 2025

IParkingLot parkingLot
) internal {

// [...]
uint256 float = _asset.balanceOf(address(this));

if (amount_ <= float) {
bool result = TokenHelper.attemptSafeTransfer(address(asset_),

receiver_, amount_, false);
// [...]

} else {
uint256 diff = amount_ - float;
uint256 totalWithdrawn = 0;
uint256 len = strategies.length;
for (uint256 i; i < len;) {

// [...]
uint256 amountToWithdraw = _calculateWithdrawalAmount(amount_,

strategy);
// [...]
try strategy.strategy.withdraw(amountToWithdraw, receiver_,

address(this)) {}
catch {

// [...]
}
totalWithdrawn += amountToWithdraw;
unchecked {

i++;
}

}
if (totalWithdrawn < amount_ && amount_ - totalWithdrawn <= float) {

uint256 net = amount_ - totalWithdrawn;
bool result = TokenHelper.attemptSafeTransfer(address(asset_),

receiver_, net, false);
// [...]

}
}

}

function _calculateWithdrawalAmount(uint256 amount_, Strategy memory strategy)
internal pure returns (uint256) {
return amount_.mulDiv(strategy.allocation.amount, MAX_BASIS_POINTS,
Math.Rounding.Floor);

}

In the latter case, if withdrawals from the strategies are insufficient for the requested amount, the
function withdraws the remaining amount from the vault's asset balance. However, if insufficient

Zellic © 2025 ← Back to Contents Page 16 of 75

Concrete Smart Contract Security Assessment June 19, 2025

asset balance remains in the vault, the function proceedswithout reverting. Consequently, users
receive less than they are entitled to.

Impact

Users receive less than they are entitled to if the asset balance in the vault is insufficient for the
remaining amount after proportional withdrawals from the strategies.

The following scenario illustrates this issue. Assume the Concrete Vault has 20% allocation to
strategy X and 30% allocation to strategy Y.

1. Alice and Bob each deposit 500 tokens to the vault. The vault then contains 200 tokens
in strategy X, 300 tokens in strategy Y, and 500 tokens in the vault balance.

2. Bobwithdraws 500 tokens from the vault. The _withdrawStrategyFunds function
transfers 500 tokens from the vault's balance to Bob. After the withdrawal, zero asset
balance remains in the vault.

3. Alice requests a withdrawal of 500 tokens. The _withdrawStrategyFunds function
transfers 100 tokens (500 × 20%) from strategy X to Alice and transfers 150 tokens (500
× 30%) from strategy Y to Alice, then proceedswith execution.

As a result, Alice burns shares worth 500 tokens but only receives 250 tokens during withdrawal.

Recommendations

Consider reverting if the asset balance in the contract is insufficient for the remaining amount after
proportional withdrawals from the strategies:

if (totalWithdrawn < amount_ && amount_ - totalWithdrawn <= float) {
uint256 net = amount_ - totalWithdrawn;
bool result = TokenHelper.attemptSafeTransfer(address(asset_), receiver_,
net, false);
if (!result) {

parkingLot.deposit(receiver_, net);
}

}

} else {revert("...");}

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit
4bc00f6a ↗.

Zellic © 2025 ← Back to Contents Page 17 of 75

https://github.com/Blueprint-Finance/sc_earn-v1/commit/4bc00f6a3dfd3ffe19cdc57a1d88512f4e278a70

Concrete Smart Contract Security Assessment June 19, 2025

Blueprint Finance provided the following response to this finding:

The _withdrawStrategyFunds function has been restructured. The strategy allocation
percentage is now calculated relative to the total strategy allocation, rather than using
MAX_BASIS_POINTS.

Zellic © 2025 ← Back to Contents Page 18 of 75

Concrete Smart Contract Security Assessment June 19, 2025

3.3. Potential underflow in MorphoVaultStrategy._protocolWithdraw could
lead to withdrawal failure

Target MorphoVaultStrategy

Category CodingMistakes Severity Medium

Likelihood Low Impact Medium

Description

When users withdraw from a Concrete Vault that uses aMorphoVaultStrategy, the vault withdraws
a portion of assets from theMorphoVaultStrategy, and execution proceeds to the
_protocolWithdraw function.

The _protocolWithdraw function inMorphoVaultStrategy does not validate whether the assets_
parameter exceeds the contract's current _assetBalance before performing the subtraction
assets_ -= _assetBalance. This omission causes an arithmetic underflowwhen _assetBalance
exceeds assets_.

function _protocolWithdraw(uint256 assets_, uint256)
internal virtual override {
address _asset = asset();
uint256 _assetBalance = IERC20(_asset).balanceOf(address(this));
if (_assetBalance > 0) {

assets_ -= _assetBalance;
}
// [...]

}

The asset balance of theMorphoVaultStrategy contract (_assetBalance) can exceed the
requestedwithdrawal amount (assets_) in two scenarios:

1. The _autoCompoundRewards function executes before the withdrawal and swaps
harvestedMORPHO reward tokens into asset tokens.

2. An attacker transfers assets directly to theMorphoVaultStrategy to inflate
_assetBalance.

When either scenario occurs, withdrawal attempts revert due to arithmetic underflow.

Zellic © 2025 ← Back to Contents Page 19 of 75

Concrete Smart Contract Security Assessment June 19, 2025

Impact

Users cannot withdraw their funds from the vault when theMorphoVaultStrategy's asset balance
exceeds the requestedwithdrawal amount. Withdrawals remain blocked until other users'
withdrawals reduce the strategy's asset balance below the requested amount.

Recommendations

Consider adding an early return in _protocolWithdrawwhen the strategy's asset balance satisfies
the withdrawal request.

function _protocolWithdraw(uint256 assets_, uint256)
internal virtual override {
address _asset = asset();
uint256 _assetBalance = IERC20(_asset).balanceOf(address(this));
if (_assetBalance > 0) {

if (assets_ <= _assetBalance) return;

assets_ -= _assetBalance;
}
// [...]

}

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit
4b5f74fa ↗.

Zellic © 2025 ← Back to Contents Page 20 of 75

https://github.com/Blueprint-Finance/sc_earn-v1/commit/4b5f74fa8fabee6a0f6e1b855c86f9462e86e88b

Concrete Smart Contract Security Assessment June 19, 2025

3.4. The feesUpdatedAt state variable is used before initialization

Target ConcreteMultiStrategyVault

Category CodingMistakes Severity High

Likelihood Medium Impact Medium

Description

The takeFeesmodifier in the ConcreteMultiStrategyVault contract calculates protocol fees using
the feesUpdatedAt state variable and updates it after accruing fees:

modifier takeFees() {
if (!paused()) {

uint256 totalFee = accruedProtocolFee() + accruedPerformanceFee();
uint256 shareValue = convertToAssets(1e18);
uint256 _totalAssets = totalAssets();

if (shareValue > highWaterMark) highWaterMark = shareValue;

if (totalFee > 0 && _totalAssets > 0) {
uint256 supply = totalSupply();
uint256 feeInShare =

supply == 0 ? totalFee : totalFee.mulDiv(supply, _totalAssets
- totalFee, Math.Rounding.Floor);

_mint(feeRecipient, feeInShare);
feesUpdatedAt = block.timestamp;

}
}
_;

}

The deposit and mint functions call _validateAndUpdateDepositTimestamps to initialize
feesUpdatedAt to block.timestamp during the first deposit or mint:

function _validateAndUpdateDepositTimestamps(address receiver_) private {
// [...]
if (totalSupply() == 0) feesUpdatedAt = block.timestamp;
// [...]

}

Zellic © 2025 ← Back to Contents Page 21 of 75

Concrete Smart Contract Security Assessment June 19, 2025

However, the takeFeesmodifier executes before _validateAndUpdateDepositTimestampswithin
both the deposit and mint functions:

function deposit(uint256 assets_, address receiver_)
public
override
nonReentrant
whenNotPaused
takeFees
returns (uint256 shares)

{
validateAndUpdateDepositTimestamps(receiver);
// [...]

}

function mint(uint256 shares_, address receiver_)
public
override
nonReentrant
whenNotPaused
takeFees
returns (uint256 assets)

{
validateAndUpdateDepositTimestamps(receiver);
// [...]

}

As a result, when takeFees runs for the first time, feesUpdatedAt remains uninitialized (i.e., zero).
This causes accruedProtocolFee to treat the entire block.timestamp as elapsed time, resulting in
protocol fees being calculated even though no time has actually elapsed for fee accrual. If the
contract holds asset tokens at this point, the _mint(feeRecipient, feeInShare) call issues these
unearned shares to the feeRecipient.

Impact

The feeRecipient can receive unearned shares during the first deposit or mint if the vault already
holds asset tokens. This may result in an incorrect allocation of protocol fees and a dilution of other
users' shares.

Recommendations

Consider refactoring _validateAndUpdateDepositTimestamps into amodifier, and ensure it
executes before the takeFeesmodifier in the deposit and mint functions. This guarantees that
feesUpdatedAt is properly initialized before any fee calculation or accrual logic runs.

Zellic © 2025 ← Back to Contents Page 22 of 75

Concrete Smart Contract Security Assessment June 19, 2025

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit
4f5b9785 ↗.

Zellic © 2025 ← Back to Contents Page 23 of 75

https://github.com/Blueprint-Finance/sc_earn-v1/commit/4f5b97855dc6665b91ce994d4b1155d61165c49a

Concrete Smart Contract Security Assessment June 19, 2025

3.5. The protectStrategy state variable is not updated during emergencyRe-
moveStrategy call

Target ConcreteMultiStrategyVault

Category CodingMistakes Severity High

Likelihood Low Impact Medium

Description

The emergencyRemoveStrategy function allows the owner of ConcreteMultiStrategyVault to
remove a strategy in emergency situations.

function emergencyRemoveStrategy(uint256 index_, bool forceEject_)
external onlyOwner {
StrategyHelper.emergencyRemoveStrategy(strategies, asset(), index_,
forceEject_, protectStrategy);

}

The StrategyHelper.emergencyRemoveStrategy function attempts to clear protectStrategy if
the strategy being removed is the designated protected strategy. However, the protectStrategy
function argument is passed to the library function as amemory copy, not a storage reference. As a
result, any update to protectStrategy inside the library function does not affect the
protectStrategy state variable in the ConcreteMultiStrategyVault contract.

function emergencyRemoveStrategy(
Strategy[] storage strategies,
address asset,
uint256 index_,
bool forceEject_,
address protectStrategy

) external {
// [...]
if (forceEject_) {

// [...]
if (address(stratToRemove.strategy) == protectStrategy) {

protectStrategy = address(0);
}
// [...]

} else {
// Normal removal process
removeStrategy(stratToRemove.strategy, protectStrategy,

Zellic © 2025 ← Back to Contents Page 24 of 75

Concrete Smart Contract Security Assessment June 19, 2025

IERC20(asset));
}

}

function removeStrategy(IStrategy stratToBeRemoved_, address protectStrategy_,
IERC20 asset)
public
returns (address protectStrategy)

{
// [...]
if (protectStrategy_ == address(stratToBeRemoved_)) {

protectStrategy = address(0);
} else {

// [...]
}
// [...]

}

Consequently, after the owner calls emergencyRemoveStrategy to remove the protected strategy,
the protectStrategy state variable remains unchanged.

Impact

When the owner removes the current protectStrategy using emergencyRemoveStrategy, the
strategy's address remains in the protectStrategy state variable. The removed strategy retains
its privileged permissions and can still call functions protected by the onlyProtectmodifier, such
as the function requestFunds, which could request funds from the vault.

Recommendations

Modify StrategyHelper.emergencyRemoveStrategy to return the updated protected strategy
address. Update ConcreteMultiStrategyVault.emergencyRemoveStrategy to capture this return
value, and update the protectStrategy state variable accordingly.

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit
8b5c7fd0 ↗.

Zellic © 2025 ← Back to Contents Page 25 of 75

https://github.com/Blueprint-Finance/sc_earn-v1/commit/8b5c7fd0b26d491e313c450fc5f360485da6dd19

Concrete Smart Contract Security Assessment June 19, 2025

3.6. Incorrect L2 sequencer uptime feed integration

Target ConcreteOracle

Category CodingMistakes Severity High

Likelihood Medium Impact Medium

Description

When the L2 sequencer feed (_sequencerOracle) is set, the getAssetPrice function in
ConcreteOracle checks data freshness from the sequencer feed before consuming data from the
price feed:

function getAssetPrice(address asset) public view override returns (uint256) {
// [...]

(, int256 price,, uint256 updatedAt,) = source.latestRoundData();
bool isFreshPrice = updatedAt >= (block.timestamp

- getGracePeriodOfAsset(asset));
if (price > 0 && isFreshPrice && _isSequencerOracleFresh()) {

return _normalizePrice(source, uint256(price));
} else {

return _getAssetPriceFromFallbackOracle(asset);
}

// [...]
}

function _isSequencerOracleFresh() internal view returns (bool) {
// for L1 layers, we always return true
if (address(_sequencerOracle) == address(0)) return true;
// for L2 layers, we check if the price is fresh
(,,, uint256 updatedAt,) = _sequencerOracle.latestRoundData();
return updatedAt >= (block.timestamp - DEFAULT_GRACE_PERIOD);

}

However, L2 sequencer uptime feeds update only when the sequencer status changes. If the
sequencer operates normally and the last update occurred long ago, _isSequencerOracleFresh
returns false. This causes getAssetPrice to use the fallback oracle price instead of the primary
source price, which is not the intended design.

According to the Chainlink "L2 Sequencer Uptime Feeds" documentation ↗, correct integration
with L2 sequencer uptime feeds requires 1) checking the sequencer status and reverting if it is
down, and 2) implementing a grace period after the sequencer restarts.

Zellic © 2025 ← Back to Contents Page 26 of 75

https://docs.chain.link/data-feeds/l2-sequencer-feeds#example-consumer-contract

Concrete Smart Contract Security Assessment June 19, 2025

Impact

The incorrect freshness check from the sequencer feed causes getAssetPrice to use the fallback
oracle price when it should use the primary source price. If the fallback oracle is unset,
getAssetPrice returns 0, which causes reverts in calling functions.

Additionally, themissing sequencer status check allows getAssetPrice to use stale prices. When
the L2 sequencer goes down, price oracles stop updating data. Stale prices can appear fresh
during sequencer downtime.

Recommendations

We recommend removing the incorrect _isSequencerOracleFresh check and implementing the
L2 sequencer uptime check specified by Chainlink.

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit
731f01d7 ↗.

Zellic © 2025 ← Back to Contents Page 27 of 75

https://github.com/Blueprint-Finance/sc_earn-v1/commit/731f01d7d225e3ac722006b6d4c237873db4ff39

Concrete Smart Contract Security Assessment June 19, 2025

3.7. Unclaimedwithdrawal requestsmay be incorrectly finalized

Target WithdrawalQueue,WithdrawalQueueHelper

Category Business Logic Severity Medium

Likelihood Medium Impact Medium

Description

When the owner of the vault batch claimswithdrawal requests, the function batchClaim
determines whether to terminate the current batch claim based on the remaining available assets
and the value of maxRequests set by the owner. For available assets, the function
prepareWithdrawal is expected to return the newAvaliableAssets as the difference between the
avaliableAssets and the withdrawal amount when the withdrawal amount does not exceed the
avaliableAssets; otherwise, if the withdrawal amount if greater than avaliableAssets, the
returned newAvaliableAssets should be equal to avaliableAssets.

function batchClaim(
IWithdrawalQueue withdrawalQueue,
uint256 maxRequests,
uint256 availableAssets,
// [...]

) external {
// [...]

uint256 max = lastCreatedId < lastFinalizedId + maxRequests ?
lastCreatedId : lastFinalizedId + maxRequests;

for (uint256 i = lastFinalizedId + 1; i <= max;) {
uint256 newAvailiableAssets =

claimWithdrawal(i, availableAssets, withdrawalQueue, asset,
strategies, parkingLot);

// slither-disable-next-line incorrect-equality
if (newAvailiableAssets == availableAssets) break;

availableAssets = newAvailiableAssets;
newLastFinalized = i;
unchecked {

i++;
}

}
// [...]

}

Zellic © 2025 ← Back to Contents Page 28 of 75

Concrete Smart Contract Security Assessment June 19, 2025

function claimWithdrawal(
uint256 _requestId,
uint256 avaliableAssets,
IWithdrawalQueue withdrawalQueue,
// [...]

) public returns (uint256) {
(address recipient, uint256 amount, uint256 newAvaliableAssets) =

withdrawalQueue.prepareWithdrawal(_requestId, avaliableAssets);

if (avaliableAssets != newAvaliableAssets) {
_withdrawStrategyFunds(amount, recipient, asset, strategies,

parkingLot);
}
return newAvaliableAssets;

}

However, the function prepareWithdrawalwill not initialize the returned avaliableAssetswhen
_avaliableAssets is less than amount.

function prepareWithdrawal(uint256 _requestId, uint256 _avaliableAssets)
external
onlyOwner
returns (address recipient, uint256 amount, uint256 avaliableAssets)

{
// [...]

recipient = request.recipient;

WithdrawalRequest storage prevRequest = _requests[_requestId - 1];

amount = request.cumulativeAmount - prevRequest.cumulativeAmount;

if (_avaliableAssets >= amount) {
assert(_requestsByOwner[recipient].remove(_requestId));
avaliableAssets = _avaliableAssets - amount;
request.claimed = true;
// [...]

}
}

Zellic © 2025 ← Back to Contents Page 29 of 75

Concrete Smart Contract Security Assessment June 19, 2025

Impact

When thewithdrawal amount is greater than the remaining available assets, the value of the
newAvaliableAssets returned by the function prepareWithdrawalwill be zero, which does not
equal the avaliableAssets before the call.

With Finding 3.2. ↗, because the transaction will not be reverted when totalWithdrawn < amount_
and amount_ - totalWithdrawn > float, the function _withdrawStrategyFundsmay revert the
transaction ormay be successfully executedwhen avaliableAssets is insufficient. If the
execution succeeds, the receiver can only receive part of the assets they are supposed to receive,
and the request that has not beenmarked as claimed in theWithdrawalQueue contract may be
incorrectly recorded as the last finalized ID. As a result, the next batch claimwill start processing
from this request's following request. This request, which has not been fully claimed, will not be
executed again.

Recommendations

Consider initializing the avaliableAssets to the value of _avaliableAssets in the function
prepareWithdrawal.

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit
d66613bb ↗.

Zellic © 2025 ← Back to Contents Page 30 of 75

https://github.com/Blueprint-Finance/sc_earn-v1/commit/d66613bb9d3169be44a3b096a82a0afcc1350c58

Concrete Smart Contract Security Assessment June 19, 2025

3.8. Incorrect swap logic in _protocolWithdraw

Target MorphoVaultStrategy

Category CodingMistakes Severity Medium

Likelihood High Impact Medium

Description

The _protocolWithdraw function inMorphoVaultStrategy contains two issues in its background
swap logic:

function _protocolWithdraw(uint256 assets_, uint256)
internal virtual override {
// [...]
if (isBackgroundSwapEnabled) {

uint256 expectedOutput = UniswapV3HelperV1.getExpectedOutput(
IQuoterV2(uniswapQuoter), _asset, address(_backgroundSwap),

assets_, poolFee
);
isValidQuote(_asset, address(_backgroundSwap), assets_,

expectedOutput);
//@dev add slippage protection and increase the amount to withdraw by

1%
uint256 swapAssets = expectedOutput.mulDiv(100_00 + MAX_SLIPPAGE,

100_00, Math.Rounding.Floor);
uint256 _totalAssets_

= _morphoVault.convertToAssets(_morphoVault.balanceOf(address(this)));
uint256 assetsToWithdraw = swapAssets > _totalAssets_ ? _totalAssets_

: swapAssets;
//slither-disable-next-line unused-return
_morphoVault.withdraw(assetsToWithdraw, address(this), address(this));
uint256 swappedAmount

= _swapExactTokenToToken(address(_backgroundSwap), _asset,
assetsToWithdraw, 0);

emit BackgroundSwapWithdraw(assetsToWithdraw, swappedAmount);
} else {

// [...]
}

}

First, UniswapV3HelperV1.getExpectedOutput calls quoterV2.quoteExactInputSingle to

Zellic © 2025 ← Back to Contents Page 31 of 75

Concrete Smart Contract Security Assessment June 19, 2025

calculate output tokens (_backgroundSwap) received for assets_ input tokens (_asset):

function getExpectedOutput(IQuoterV2 quoterV2, address tokenIn,
address tokenOut, uint256 amountIn, uint24 poolFee)
external
returns (uint256 amountOut)

{
IQuoterV2.QuoteExactInputSingleParams memory quoteExactInputSingleParams
= IQuoterV2.QuoteExactInputSingleParams({

tokenIn: tokenIn,
tokenOut: tokenOut,
amountIn: amountIn,
fee: poolFee,
sqrtPriceLimitX96: 0

});
validateFeeTier(poolFee);
(amountOut,,,)
= quoterV2.quoteExactInputSingle(quoteExactInputSingleParams);

}

However, the intended behavior in _protocolWithdraw requires calculating input tokens
(_backgroundSwap) needed to obtain assets_ amount of output tokens (_asset). In this case,
quoterV2.quoteExactOutputSingle instead of quoterV2.quoteExactInputSingle should be
used.

Second, _protocolWithdraw adds MAX_SLIPPAGE percentage to the input token amount:

uint256 swapAssets = expectedOutput.mulDiv(100_00 + MAX_SLIPPAGE, 100_00,
Math.Rounding.Floor);

This addition is unnecessary. The quote simulates the actual swap, and both operations occur in
the same transaction. No slippage occurs between simulation and execution. Instead of
withdrawing extra tokens, the function should specify minAmountOut in _swapExactTokenToToken:

uint256 swappedAmount = _swapExactTokenToToken(address(_backgroundSwap), _

asset, assetsToWithdraw, 0);

uint256 swappedAmount = _swapExactTokenToToken(address(_backgroundSwap), _

asset, assetsToWithdraw, assets_);

Impact

Each background swap in _protocolWithdrawwithdraws an extra MAX_SLIPPAGE percentage from
_morphoVault. These excess tokens remain idle in the strategy, reducing yield potential.

Zellic © 2025 ← Back to Contents Page 32 of 75

Concrete Smart Contract Security Assessment June 19, 2025

Recommendations

First, add a getExpectedInput function to UniswapV3HelperV1 that uses
quoterV2.quoteExactOutputSingle to calculate required input tokens for a specific output
amount. Replace getExpectedOutputwith this function in _protocolWithdraw.

Second, execute _swapExactTokenToTokenwith minAmountOut set to assets_, and also add an
isValidQuote check to ensure the swap price is within a valid range.

uint256 swappedAmount = _swapExactTokenToToken(address(_backgroundSwap), _

asset, assetsToWithdraw, 0);

isValidQuote(address(_backgroundSwap), _asset, assetsToWithdraw, assets_);

uint256 swappedAmount = _swapExactTokenToToken(address(_backgroundSwap), _

asset, assetsToWithdraw, assets_);

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit
0a705658 ↗.

Zellic © 2025 ← Back to Contents Page 33 of 75

https://github.com/Blueprint-Finance/sc_earn-v1/commit/0a7056586cfcba8b0b4b5d4117ced608ecef4b0e

Concrete Smart Contract Security Assessment June 19, 2025

3.9. The VaultManager contract lacks the code to call the function emergencyRe-
moveStrategy

Target VaultManager

Category CodingMistakes Severity Low

Likelihood N/A Impact Low

Description

The function emergencyRemoveStrategy can only be invoked by the owner of the
ConcreteMultiStrategyVault contract. However, the owner — the VaultManager contract — does
not implement code to call this function.

function emergencyRemoveStrategy(uint256 index_, bool forceEject_)
external onlyOwner

Impact

This function cannot be invoked unless the VaultManager contract is upgraded to include the logic
for managing it or the ownership of the ConcreteMultiStrategyVault is transferred to an account
capable of invoking it.

Recommendations

Add the function emergencyRemoveStrategy to the VaultManager contract to call the function
emergencyRemoveStrategy of the ConcreteMultiStrategyVault.

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit
64361970 ↗.

Zellic © 2025 ← Back to Contents Page 34 of 75

https://github.com/Blueprint-Finance/sc_earn-v1/commit/64361970b11d70d31b39d963eccb1b560d22db1a

Concrete Smart Contract Security Assessment June 19, 2025

3.10. Incorrect transfer amount in the function rescueFunds

Target MultiSigStrategyV1

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

The function rescueFunds in theMultiSigStrategyV1 contract can rescue any assets held by this
strategy. However, the amount to transfer is the underlying asset balance of the contract, instead
of the asset_ balance.

function rescueFunds(address asset_) external onlyOwner {

IERC20(asset_).safeTransfer(owner(), IERC20(asset()).balanceOf(address(

this)));

}

Impact

The owner needs to control the balance of the underlying asset to rescue a specific asset in the
contract.

Recommendations

Consider updating the function according to the following code:

function rescueFunds(address asset_) external onlyOwner {

IERC20(asset_).safeTransfer(owner(), IERC20(asset()).balanceOf(address(

this)));

IERC20(asset_).safeTransfer(owner(), IERC20(asset_).balanceOf(address(

this)));

}

Zellic © 2025 ← Back to Contents Page 35 of 75

Concrete Smart Contract Security Assessment June 19, 2025

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit
e71d5bda ↗.

Zellic © 2025 ← Back to Contents Page 36 of 75

https://github.com/Blueprint-Finance/sc_earn-v1/commit/e71d5bda116f239c7cdca928ea9d670c408f70e5

Concrete Smart Contract Security Assessment June 19, 2025

3.11. The function redeem lacks dust-amount check

Target ConcreteMultiStrategyVault

Category Business Logic Severity Low

Likelihood Low Impact Low

Description

Functions deposit and mint check whether the amount of shares to beminted is greater than the
DUST amount, and the function withdraw checks whether the amount of shares to be burned is
greater than the DUST amount. However, the function redeem does not perform this check.

Impact

When a user redeems a dust amount of shares, theymay receive zero assets, resulting in a loss of
funds.

Recommendations

Add a check in the function redeem to ensure that the amount of shares is greater than DUST.

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit
7e38c044 ↗.

Zellic © 2025 ← Back to Contents Page 37 of 75

https://github.com/Blueprint-Finance/sc_earn-v1/commit/7e38c0442136939f23ea94167518e6aa75498523

Concrete Smart Contract Security Assessment June 19, 2025

3.12. Inconsistent handling of infinite allowance in _withdraw

Target ConcreteMultiStrategyVault

Category CodingMistakes Severity Low

Likelihood High Impact Low

Description

The ConcreteMultiStrategyVault contract inherits fromOpenZeppelin's ERC-20 implementation,
which uses type(uint256).max as a sentinel value to represent infinite allowance. The standard
internal _spendAllowance function preserves this infinite approval by not decreasing the
allowancewhen it is set to type(uint256).max.

function _spendAllowance(address owner, address spender, uint256 value)
internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {

if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance,

value);
}
unchecked {

_approve(owner, spender, currentAllowance - value, false);
}

}
}

However, the _withdraw function in ConcreteMultiStrategyVault does not use _spendAllowance.
Instead, it manually calculates and reduces the allowancewhen an approved spender (msg.sender
!= owner_) executes a withdrawal. This approach does not check for the infinite allowance
sentinel value.

function _withdraw(uint256 assets_, address receiver_, address owner_,
uint256 shares, uint256 feeShares) private {
// [...]
if (msg.sender != owner_) {

approve(owner, msg.sender, allowance(owner_, msg.sender) - shares);
}
// [...]

}

Zellic © 2025 ← Back to Contents Page 38 of 75

Concrete Smart Contract Security Assessment June 19, 2025

Impact

When token owners grant spenders infinite allowance, the allowance decreases if spenders
withdraw assets from the vault on their behalf. This behavior is inconsistent with the transferFrom
function, where infinite allowances remain unchanged after transfers.

Recommendations

Consider replacing the _approve call with the _spendAllowance internal function, which checks for
infinite allowance before reducing the allowance.

function _withdraw(uint256 assets_, address receiver_, address owner_,
uint256 shares, uint256 feeShares) private {
// [...]
if (msg.sender != owner_) {

approve(owner, msg.sender, allowance(owner_, msg.sender) - shares);

spendAllowance(owner, msg.sender, shares);

}
// [...]

}

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit
44114dac ↗.

Zellic © 2025 ← Back to Contents Page 39 of 75

https://github.com/Blueprint-Finance/sc_earn-v1/commit/44114dace4b1c655119d88105fed0ae9be3a4bd4

Concrete Smart Contract Security Assessment June 19, 2025

3.13. Lack of support for the 0.01% fee tier for swaps inMorphoVaultStrategy

Target UniswapV3HelperV1

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

MorphoVaultStrategy performs token swaps on Uniswap for backgroundSwap and
_autoCompoundRewards. Prior to a swap, the validateFeeTier function in the UniswapV3HelperV1
library checks the pool fee:

function validateFeeTier(uint24 fee) public pure {
if (fee != 500 && fee != 3000 && fee != 10000) {

revert InvalidFeeTier();
}

}

The validateFeeTier function accepts only a 0.05%, 0.3%, or 1% pool fee for Uniswap swaps.
However, Uniswap V3 includes a 0.01% fee tier ↗ (100 basis points), particularly beneficial for
stablecoin trading.

Consequently, swaps that use the 0.01% fee tier are incompatible withMorphoVaultStrategy.

Impact

MorphoVaultStrategy cannot execute swaps on Uniswap pools with the 0.01% fee tier, potentially
missing optimal trading routes for stablecoin pairs.

Recommendations

We recommend updating the validateFeeTier function to support the 0.01% (100) fee tier:

function validateFeeTier(uint24 fee) public pure {

if (fee != 500 && fee != 3000 && fee != 10000) {

if (fee != 100 && fee != 500 && fee != 3000 && fee != 10000) {

revert InvalidFeeTier();
}

}

Zellic © 2025 ← Back to Contents Page 40 of 75

https://vote.uniswapfoundation.org/proposals/9

Concrete Smart Contract Security Assessment June 19, 2025

Remediation

This issue has been acknowledged by Blueprint Finance, and fixes were implemented in the
following commits:

• 29666589 ↗
• b23b1095 ↗

Zellic © 2025 ← Back to Contents Page 41 of 75

https://github.com/Blueprint-Finance/sc_earn-v1/commit/296665896c3feaf1930232447fe3b1cd105479a2
https://github.com/Blueprint-Finance/sc_earn-v1/commit/b23b10954ebdd75a763ef00c33c73f748df1e383

Concrete Smart Contract Security Assessment June 19, 2025

3.14. Function getAvailableAssetsForWithdrawal should return zero when
withdrawEnabled is false

Target MultiSigStrategyV1

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

When withdrawEnabled is false, the revert in _protocolWithdraw prevents the Concrete Vault
fromwithdrawing from theMultiSigStrategyV1 strategy:

function _protocolWithdraw(uint256 assets_, uint256)
internal virtual override {
if (!withdrawEnabled) revert WithdrawDisabled();
// [...]

}

Therefore, getAvailableAssetsForWithdrawal should return 0 in this case. However, it currently
returns _vaultDepositedAmount:

function getAvailableAssetsForWithdrawal()
public view override returns (uint256) {
if (!withdrawEnabled) return _vaultDepositedAmount;
// [...]

}

Impact

For a Concrete Vault using theMultiSigStrategyV1 strategy, if withdrawEnabled is false, the vault
receives an incorrect estimate of the withdrawable amount from the strategies.

Recommendations

Update the getAvailableAssetsForWithdrawal function to return zero when withdrawEnabled is
false.

Zellic © 2025 ← Back to Contents Page 42 of 75

Concrete Smart Contract Security Assessment June 19, 2025

function getAvailableAssetsForWithdrawal()
public view override returns (uint256) {
if (!withdrawEnabled) return _vaultDepositedAmount;

if (!withdrawEnabled) return 0;

// [...]
}

Remediation

This issue has been acknowledged by Blueprint Finance.

Blueprint Finance provided the following response to this finding:

We intentionally return _vaultDepositedAmount when withdrawEnabled is false. This was
originally a workaround to force withdrawals to go through the queue, since some vaults
weren’t upgradeable.

This behavior only applies when multiSigStrategy is the sole strategy in the vault, and we’d
prefer to keep it as-is for backward compatibility.

Zellic © 2025 ← Back to Contents Page 43 of 75

Concrete Smart Contract Security Assessment June 19, 2025

3.15. FunctionchangeAllocationsdoesnotcheckvaultIdlestatusbefore redis-
tributing assets

Target ConcreteMultiStrategyVault

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

The changeAllocations function in the ConcreteMultiStrategyVault contract does not check the
vaultIdle status before redistributing assets:

function changeAllocations(
Strategy[] storage strategies,
Allocation[] calldata allocations_,
bool redistribute,
address asset

) external {
// [...]
if (redistribute) {

pullFundsFromStrategies(strategies);
distributeAssetsToStrategies(strategies,

IERC20(asset).balanceOf(address(this)));
}
// [...]

}

According to the contract's design, setting vaultIdle to true should prevent all deposits into
underlying strategies. However, when changeAllocations is called with the redistribute
parameter set to true, the function proceeds to call distributeAssetsToStrategieswithout this
validation.

Impact

The changeAllocations function allows deposits into strategies evenwhen vaultIdle is true,
bypassing the intended idle vault restrictions.

Zellic © 2025 ← Back to Contents Page 44 of 75

Concrete Smart Contract Security Assessment June 19, 2025

Recommendations

We recommend adding the vaultIdle check within the changeAllocations function before
assets are redistributed.

function changeAllocations(
Strategy[] storage strategies,
Allocation[] calldata allocations_,
bool redistribute,
address asset

) external {
// [...]
if (redistribute) {

pullFundsFromStrategies(strategies);

if (vaultIdle) revert("vaultIdle");

distributeAssetsToStrategies(strategies,
IERC20(asset).balanceOf(address(this)));
}
// [...]

}

Remediation

This issue has been acknowledged by Blueprint Finance.

Blueprint Finance provided the following response to this finding:

We haven’t used the vaultIdle flag so far and it appears to be redundant in our current logic.
The changeAllocations() function isn't intended to interact with vaultIdle, sowe’re choosing to
skip this fix.

Zellic © 2025 ← Back to Contents Page 45 of 75

Concrete Smart Contract Security Assessment June 19, 2025

3.16. Incorrect rounding direction in previewMint

Target ConcreteMultiStrategyVault

Category CodingMistakes Severity Low

Likelihood Medium Impact Low

Description

The previewMint function in the ConcreteMultiStrategyVault contract uses Rounding.Floor as
the rounding direction for grossShares after fee calculation and in _convertToAssets:

function previewMint(uint256 shares_) public view override returns (uint256) {
uint256 grossShares = shares_.mulDiv(MAX_BASIS_POINTS, MAX_BASIS_POINTS
- fees.depositFee, Math.Rounding.Floor);
return _convertToAssets(grossShares, Math.Rounding.Floor);

}

However, the mint function uses Rounding.Ceil for both operations:

function mint(uint256 shares_, address receiver_)
public
override
nonReentrant
whenNotPaused
takeFees
returns (uint256 assets)

{
// [...]
uint256 feeShares =

shares_.mulDiv(MAX_BASIS_POINTS, MAX_BASIS_POINTS - depositFee,
Math.Rounding.Ceil) - shares_;
// [...]
assets = _convertToAssets(shares_ + feeShares, Math.Rounding.Ceil);
// [...]

}

Impact

This inconsistency in rounding direction causes previewMint to return inaccuratemint previews.

Zellic © 2025 ← Back to Contents Page 46 of 75

Concrete Smart Contract Security Assessment June 19, 2025

Recommendations

Update the rounding direction in previewMint tomatch the mint function's use of Rounding.Ceil.

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit
c58be473 ↗.

Zellic © 2025 ← Back to Contents Page 47 of 75

https://github.com/Blueprint-Finance/sc_earn-v1/commit/c58be47324f8533fed68a05ebdb1c9b76ecfe838

Concrete Smart Contract Security Assessment June 19, 2025

3.17. The fees charged to the feeRecipient are inconsistent between functions
deposit and mint

Target ConcreteMultiStrategyVault

Category Business Logic Severity Informational

Likelihood High Impact Informational

Description

Users can choose to use either the function deposit or the function mint to deposit an asset to the
vault. However, themethods bywhich functions deposit and mint charge the feeRecipient are
inconsistent. The function deposit does not charge a deposit fee when the caller is the
feeRecipient, while the function mint always charges a deposit fee regardless of the caller.

function deposit(uint256 assets_, address receiver_)
// [...]
returns (uint256 shares)

{
// [...]
// Calculate shares based on whether sender is fee recipient
if (msg.sender == feeRecipient) {

shares = _convertToShares(assets_, Math.Rounding.Floor);
} else {

// Calculate the fee in shares
uint256 feeShares = _convertToShares(

assets_.mulDiv(uint256(fees.depositFee), MAX_BASIS_POINTS,
Math.Rounding.Ceil), Math.Rounding.Ceil

);

// Calculate the net shares to mint for the deposited assets
shares = _convertToShares(assets_, Math.Rounding.Floor) - feeShares;

// Mint fee shares to fee recipient
if (feeShares > 0) _mint(feeRecipient, feeShares);

}
// [...]

}

function mint(uint256 shares_, address receiver_)
// [...]

Zellic © 2025 ← Back to Contents Page 48 of 75

Concrete Smart Contract Security Assessment June 19, 2025

returns (uint256 assets)
{

// [...]

// Calculate the deposit fee in shares
uint256 depositFee = uint256(fees.depositFee);
uint256 feeShares =

shares_.mulDiv(MAX_BASIS_POINTS, MAX_BASIS_POINTS - depositFee,
Math.Rounding.Ceil) - shares_;

// Calculate the total assets required for the minted shares, including
fees
assets = _convertToAssets(shares_ + feeShares, Math.Rounding.Ceil);
// [...]

}

Impact

If the feeRecipient is depositing on behalf of a receiver, then, using the same amount of the asset,
the receiver will receivemore shares if the function deposit is used.

Recommendations

Consider unifying the way these two functions charge the feeRecipient and updating functions
previewDeposit and previewMint accordingly.

Remediation

This issue has been acknowledged by Blueprint Finance, and fixes were implemented in the
following commits:

• f3c41a5d ↗
• b23b1095 ↗

Zellic © 2025 ← Back to Contents Page 49 of 75

https://github.com/Blueprint-Finance/sc_earn-v1/commit/f3c41a5db3ca4c0564a1b3d73f0bae1e136b40c9
https://github.com/Blueprint-Finance/sc_earn-v1/commit/b23b10954ebdd75a763ef00c33c73f748df1e383

Concrete Smart Contract Security Assessment June 19, 2025

3.18. The BTCLinkedPriceFeed contract does not initialize the owner

Target BTCLinkedPriceFeed

Category CodingMistakes Severity Informational

Likelihood N/A Impact Informational

Description

The BTCLinkedPriceFeed contract inherits from the OwnableUpgradeable contract, but it does not
call the function __Ownable_init during the initialization to initialize the owner.

Impact

The owner address will be the zero address after initialization. If there are functions with the
onlyOwnermodifier planned to be added into this contract, it is recommended to fix this issue.

Recommendations

Consider adding a call to the function __Ownable_init in the function initialize or removing the
inherited contract OwnableUpgradeable.

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit
4d72bd74 ↗.

Zellic © 2025 ← Back to Contents Page 50 of 75

https://github.com/Blueprint-Finance/sc_earn-v1/commit/4d72bd74098363d489220a6347068a730e39ad89

Concrete Smart Contract Security Assessment June 19, 2025

3.19. Insufficient validation of _requestId

Target WithdrawalQueue

Category CodingMistakes Severity Informational

Likelihood N/A Impact Informational

Description

The storage variable lastFinalizedRequestId records the last claimed request. And the function
prepareWithdrawal is used to process unclaimed requests. Thus, this function should not process
a request when its _requestId equals the lastFinalizedRequestId.

function prepareWithdrawal(uint256 _requestId, uint256 _avaliableAssets)
external
onlyOwner
returns (address recipient, uint256 amount, uint256 avaliableAssets)

{
if (_requestId == 0) revert InvalidRequestId(_requestId);

if (_requestId < lastFinalizedRequestId) revert RequestNotFoundOrFinalized(

_requestId);

WithdrawalRequest storage request = _requests[_requestId];

if (request.claimed) revert RequestAlreadyClaimed(_requestId);

// [...]
}

Impact

If each request can be correctly marked as claimed or not, not checking whether the _requestId
equals lastFinalizedRequestIdwill not havemuch impact — it would only cause the transaction
to revert a bit later.

However, the vault has a function claimWithdrawal, which can claim anywithdrawal request with
the provided _requestId. Although it is currently a private function, if it were to bemade public in
the future and there exists a request that was incorrectly finalized but not yet marked as claimed
(see Finding 3.7. ↗ for details), this request could be executed again through the function
prepareWithdrawal. As a result, the receiver would receivemore assets than intended, due to the

Zellic © 2025 ← Back to Contents Page 51 of 75

Concrete Smart Contract Security Assessment June 19, 2025

combination of assets sent during the erroneous finalization and the re-execution.

Recommendations

Consider updating the check according to the following code:

if (_requestId < lastFinalizedRequestId) revert RequestNotFoundOrFinalized(_

requestId);

if (_requestId <= lastFinalizedRequestId) revert RequestNotFoundOrFinalized(_

requestId);

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit
574ea328 ↗.

Zellic © 2025 ← Back to Contents Page 52 of 75

https://github.com/Blueprint-Finance/sc_earn-v1/commit/574ea3280d110517200331a02338f10d284b22a4

Concrete Smart Contract Security Assessment June 19, 2025

3.20. Unchecked return value in setParkingLot

Target ConcreteMultiStrategyVault

Category CodingMistakes Severity Informational

Likelihood N/A Impact Informational

Description

The setParkingLot function in the ConcreteMultiStrategyVault contract does not check the
successfulApproval boolean returned by TokenHelper.attemptForceApprove. If the approval
fails, subsequent deposits to the parking lot will revert.

function setParkingLot(address parkingLot_) external onlyOwner {
// [...]
bool successfulApproval = TokenHelper.attemptForceApprove(token,
parkingLot_, type(uint256).max, false);
emit ParkingLotUpdated(currentParkingLot, parkingLot_,
successfulApproval);

parkingLot = IParkingLot(parkingLot_); // Update the fee recipient
}

Impact

If the approval fails, the contract still updates parkingLot to the new address. Since the vault
requires token approval to deposit into the parking lot, all future parking-lot deposit attempts will
fail.

Recommendations

Verify that the approval succeeds.

function setParkingLot(address parkingLot_) external onlyOwner {
// [...]
bool successfulApproval = TokenHelper.attemptForceApprove(token,
parkingLot_, type(uint256).max, false);
require(successfulApproval, "Approve failed");

// [...]
}

Zellic © 2025 ← Back to Contents Page 53 of 75

Concrete Smart Contract Security Assessment June 19, 2025

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit
7b237030 ↗.

Zellic © 2025 ← Back to Contents Page 54 of 75

https://github.com/Blueprint-Finance/sc_earn-v1/commit/7b237030e4c59807d2bc2b24eb52bda950a12771

Concrete Smart Contract Security Assessment June 19, 2025

3.21. Incorrect withdrawable check in _withdrawStrategyFunds

Target WithdrawalQueueHelper

Category CodingMistakes Severity Informational

Likelihood N/A Impact Informational

Description

The _withdrawStrategyFunds function in theWithdrawalQueueHelper library contains two issues
in its withdrawable amount validation:

function _withdrawStrategyFunds(
uint256 amount_,
address receiver_,
address asset_,
Strategy[] memory strategies,
IParkingLot parkingLot

) internal {
// [...]

uint256 withdrawable =
strategy.strategy.previewRedeem(strategy.strategy.balanceOf(address(this)));

if (diff.mulDiv(strategy.allocation.amount, MAX_BASIS_POINTS,
Math.Rounding.Floor) > withdrawable) {

revert Errors.InsufficientFunds(strategy.strategy, diff
* strategy.allocation.amount, withdrawable);

}
uint256 amountToWithdraw = _calculateWithdrawalAmount(amount_,

strategy);
// [...]

}

First, the code compares withdrawable against a proportional amount calculated from diff (which
equals amount_ - float) rather than from amount_ itself.

Second, the code uses the previewRedeemmethod to determine the withdrawable amount. This
methodmay not accurately reflect withdrawal limits. The getAvailableAssetsForWithdrawal
method provides amore accurate withdrawable amount.

Zellic © 2025 ← Back to Contents Page 55 of 75

Concrete Smart Contract Security Assessment June 19, 2025

Impact

Since diff can be less than amount_, the withdrawable checkmay fail to detect insufficient funds
for withdrawal. In this case, the execution would fail in the actual withdrawal process and spend
more gas.

Recommendations

Check the withdrawable amount against amountToWithdraw rather than the calculated
proportional diff amount. Additionally, use the getAvailableAssetsForWithdrawalmethod
instead of previewRedeem to obtain the withdrawable amount.

function _withdrawStrategyFunds(
uint256 amount_,
address receiver_,
address asset_,
Strategy[] memory strategies,
IParkingLot parkingLot

) internal {
// [...]

uint256 withdrawable = strategy.strategy.previewRedeem(strategy.

strategy.balanceOf(address(this)));

uint256 withdrawable = strategy.strategy.getAvailableAssetsForWithd

rawal();

if (diff.mulDiv(strategy.allocation.amount, MAX_BASIS_POINTS, Math.

Rounding.Floor) > withdrawable) {

revert Errors.InsufficientFunds(strategy.strategy, diff * strategy.

allocation.amount, withdrawable);

}

uint256 amountToWithdraw = _calculateWithdrawalAmount(amount_,
strategy);

if (amountToWithdraw > withdrawable) revert Errors.InsufficientFunds(

strategy.strategy, amountToWithdraw, withdrawable);

// [...]
}

Zellic © 2025 ← Back to Contents Page 56 of 75

Concrete Smart Contract Security Assessment June 19, 2025

Remediation

This issue has been acknowledged by Blueprint Finance, and fixes were implemented in the
following commits:

• 236f073f ↗
• 4bc00f6a ↗

Zellic © 2025 ← Back to Contents Page 57 of 75

https://github.com/Blueprint-Finance/sc_earn-v1/commit/236f073fa67b1c732461a16d630c5d4c99f8085a
https://github.com/Blueprint-Finance/sc_earn-v1/commit/4bc00f6a3dfd3ffe19cdc57a1d88512f4e278a70

Concrete Smart Contract Security Assessment June 19, 2025

3.22. ConcreteMultiStrategy should inherit from ReentrancyGuardUpgradeable
instead of ReentrancyGuard

Target ConcreteMultiStrategy

Category CodingMistakes Severity Informational

Likelihood N/A Impact Informational

Description

The ConcreteMultiStrategy contract deploys via clone, and its state initializes in the initialize
function. Therefore, it should inherit from ReentrancyGuardUpgradeable instead of
ReentrancyGuard.

Impact

The _status storage variable in ConcreteMultiStrategy remains uninitialized during the
initialize call. Although it will be correctly set to NOT_ENTERED after the first invocation of the
nonReentrantmodifier, it is best practice to inherit from ReentrancyGuardUpgradeable.

Recommendations

ConcreteMultiStrategy should inherit ReentrancyGuardUpgradeable instead of ReentrancyGuard
and initialize the _status storage variable in the initialize function.

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit
0884cb28 ↗.

Zellic © 2025 ← Back to Contents Page 58 of 75

https://github.com/Blueprint-Finance/sc_earn-v1/commit/0884cb284a93f0dd20f08fc54cd9077f436fb5a1

Concrete Smart Contract Security Assessment June 19, 2025

3.23. Incorrect implementation of max functions in ConcreteMultiStrategy

Target ConcreteMultiStrategy

Category CodingMistakes Severity Informational

Likelihood N/A Impact Informational

Description

ConcreteMultiStrategy implements the max function family incorrectly according to the ERC-4626
standard.

First, maxMint returns depositable assets instead of mintable shares:

function maxMint(address) public view override returns (uint256) {
return (paused() || totalAssets() >= depositLimit) ? 0 : depositLimit
- totalAssets();

}

Second, maxDeposit does not verify the paused status or deposit limit.

Third, maxWithdraw subtracts all pending fees instead of the user's proportional share:

function maxWithdraw(address owner)
public view virtual override returns (uint256) {
// Get the raw max withdrawal amount
uint256 rawMaxWithdraw = _convertToAssets(balanceOf(owner),
Math.Rounding.Floor);

// Calculate pending fees
uint256 pendingFees = accruedProtocolFee();

// Return max withdraw minus pending fees
return rawMaxWithdraw.mulDiv(MAX_BASIS_POINTS - fees.withdrawalFee,
MAX_BASIS_POINTS, Math.Rounding.Floor)

- pendingFees;
}

Fourth, maxWithdraw accounts for pending fees while maxRedeem does not. Neither function
accounts for performance fees.

Fifth, maxWithdraw accounts for withdrawal fees while maxRedeem does not.

Zellic © 2025 ← Back to Contents Page 59 of 75

Concrete Smart Contract Security Assessment June 19, 2025

Impact

The max function implementations deviate from ERC-4626 specifications, potentially causing
integration issues with protocols expecting standard behavior.

Recommendations

Implement all max functions according to ERC-4626 specifications:

• The maxMint should return themaximummintable shares.
• The maxDeposit should verify paused status and deposit limits.
• Fee calculations should apply proportionally to user shares.
• All relevant fees should be consistently accounted for across related functions.

Remediation

This issue has been acknowledged by Blueprint Finance, and a partial fix was implemented in
commit f5b133d9 ↗.

Blueprint Finance partially resolved this finding and provided the following response:

maxRedeem() returns thenumber of shares that canbe redeemedwithout reverting, so it does
not account for fees.

maxWithdraw() returns the maximum amount of the underlying asset that can be withdrawn
from the owner’s balance, and does account for fees. This behavior is intentional and consis-
tent with the ERC-4626 spec.

Zellic © 2025 ← Back to Contents Page 60 of 75

https://github.com/Blueprint-Finance/sc_earn-v1/commit/f5b133d960f0775a0a1ede53ddc08af45a3e800b

Concrete Smart Contract Security Assessment June 19, 2025

3.24. Strategy rewards accrue after the share price has been calculated

Target StrategyBase

Category Business Logic Severity Informational

Likelihood Medium Impact Informational

Description

During the withdrawal process, the vault maywithdraw assets from strategies (see section 5.2. ↗
for more details). Whenwithdrawing from a strategy, the strategy will call the function
_handleRewardsOnWithdraw to accrue rewards, whichmay increase the amount of underlying
assets held by the strategy, i.e. result in a change to the return value of the function totalAssets.

function _withdraw(address caller_, address receiver_, address owner_,
uint256 assets_, uint256 shares_)
internal
virtual
override(ERC4626Upgradeable)
onlyVault

{
// [...]
_handleRewardsOnWithdraw();
// [...]

}

Impact

Since the reward is accrued after the assets_ and shares_ have been calculated, if the accrued
reward contains the underlying asset, it is not consideredwhen calculating the share price for this
withdrawal. As a result, the share price usedwhen calculating assets_ and shares_may be lower
than the share price after rewards have accrued, which could result in users receiving fewer assets.

Recommendations

Consider harvesting rewards from the strategies before calculating the amount of assets to
withdraw or the amount of shares to burn.

Zellic © 2025 ← Back to Contents Page 61 of 75

Concrete Smart Contract Security Assessment June 19, 2025

Remediation

This issue has been acknowledged by Blueprint Finance.

Blueprint Finance provided the following response to this finding:

We acknowledge this issue, but do not plan to fix it for the following reasons:

1. Adding _handleRewardsOnWithdraw() in the withdraw/redeem before calculating
assets will require another call and that would increase gas costs.

2. We currently have no use casewhere rewards are compounded as the same token
during _handleRewardsOnWithdraw().

3. Abotalreadycallsvault.harvestRewards()every30minutes, effectivelyhandling
reward accruals. we can solve this by increasing the bot frequency as well.

4. Itwill be toomuch restructuring to implement this change in both strategy and vault
codebase.

Given the limited benefit and added complexity, we prefer to leave this as-is.

Zellic © 2025 ← Back to Contents Page 62 of 75

Concrete Smart Contract Security Assessment June 19, 2025

3.25. Incorrect use of the function _getRewardTokens to initialize the rewardTo-
kens

Target MorphoVaultStrategy

Category CodingMistakes Severity Informational

Likelihood N/A Impact Informational

Description

The constructor of theMorphoVaultStrategy contract tries to generate a reward-token array by
using the function _getRewardTokens.

constructor(ConstructorParams memory params) {
// [...]
__StrategyBase_init(

params.baseAsset,
string.concat("Concrete Morpho Vault ", symbol, " Strategy"),
string.concat("ctMV1-", symbol),
params.feeRecipient,
type(uint256).max,
params.owner,

_getRewardTokens(params.rewardFee),

params.vault
);

// [...]
}

However, this function's returned array is based on the length of the storage variable
rewardTokens, which is empty during deployment.

function _getRewardTokens(uint256 rewardFee_)
internal view returns (RewardToken[] memory) {
address[] memory rewards = getRewardTokenAddresses();
RewardToken[] memory r = new RewardToken[](rewards.length);
// [...]
return r;

}

function getRewardTokenAddresses() public view virtual returns (address[]

Zellic © 2025 ← Back to Contents Page 63 of 75

Concrete Smart Contract Security Assessment June 19, 2025

memory) {
//Each strategy should avoid returning the token considered in the
_totalAssets function as a reward token
uint256 len = rewardTokens.length;
address[] memory rT = new address[](len);
// [..]
return rT;

}

Impact

Thismeans that the owner needs to add the reward token separately via the function
addRewardToken after deployment, which should not be required if the deployment is correct.

Recommendations

Consider implementing appropriate logic to generate the reward-token array during deployment.

Remediation

This issue has been acknowledged by Blueprint Finance, and a fix was implemented in commit
7bec80ce ↗.

Zellic © 2025 ← Back to Contents Page 64 of 75

https://github.com/Blueprint-Finance/sc_earn-v1/commit/7bec80cefef2ac17ffaad7033cb00323e1acd2aa

Concrete Smart Contract Security Assessment June 19, 2025

4. Discussion The purpose of this section is to documentmiscellaneous observations that wemade during the
assessment. These discussion notes are not necessarily security related and do not convey that
we are suggesting a code change.

4.1. The ConcreteOracle.getAssetPrice should ensure the returned price uses
eight decimals

The getAssetPrice function has threemain execution paths for returning a price:

1. Primary oracle path. It queries the price from the source oracle and normalizes it to
eight decimals.

return _normalizePrice(source, uint256(price));

2. Base currency path. If the requested asset is the BASE_CURRENCY, the function returns
the BASE_CURRENCY_UNIT constant directly.

// Assumes BASE_CURRENCY_UNIT is already 10**8
if (asset == BASE_CURRENCY) {

return BASE_CURRENCY_UNIT;
}

3. Fallback oracle path. If the primary source is missing, the price is stale, or the
sequencer is offline, the function returns the price from the fallback oracle.

return _getAssetPriceFromFallbackOracle(asset);

The primary path normalizes the price to ensure it uses eight decimals:

function _normalizePrice(AggregatorV3Interface source, uint256 _price)
internal view returns (uint256) {
uint256 decimals = source.decimals();
if (decimals == 8) {

return _price;
} else if (decimals > 8) {

return _price / (10 ** (decimals - 8));
} else {

return _price * (10 ** (8 - decimals));
}

}

Zellic © 2025 ← Back to Contents Page 65 of 75

Concrete Smart Contract Security Assessment June 19, 2025

However, the other two paths do not guarantee that the returned price uses eight decimals. It is
recommended to ensure that prices from these paths also use eight decimals.

4.2. Unused _decimals variable in strategies

The StrategyBase contract includes a _decimals storage variable, which is initialized to be nine
greater than the asset's original decimals.

uint8 public _decimals;

uint8 public constant DECIMAL_OFFSET = 9;

function __StrategyBase_init(
IERC20 baseAsset_,
string memory shareName_,
string memory shareSymbol_,
address feeRecipient_,
uint256 depositLimit_,
address owner_,
RewardToken[] memory rewardTokens_,
address vault_

) internal nonReentrant initializer {
// [...]
decimals = IERC20Metadata(address(baseAsset)).decimals()
+ DECIMAL_OFFSET;
// [...]

}

However, in the strategies covered by the current audit (AaveV3Strategy, MorphoVaultStrategy,
andMultiSigStrategyV1), the _decimals variable is not used. These strategies do not override the
decimals, _convertToShares, or _convertToAssets functions to utilize _decimals and
DECIMAL_OFFSET, as demonstrated in the ExampleStrategyBaseImplementation contract.

If _decimals is not intended for use, consider removing this variable to prevent confusion in the
code.

4.3. Test suite

The test suite of this project uses the testFail test prefix to handle negative test cases.

Since the testFail prefix support was removed in Foundry V1.0, we recommend using the

Zellic © 2025 ← Back to Contents Page 66 of 75

Concrete Smart Contract Security Assessment June 19, 2025

expectRevert cheat code to ensure that the transaction reverts with the correct error message.

Zellic © 2025 ← Back to Contents Page 67 of 75

Concrete Smart Contract Security Assessment June 19, 2025

5. SystemDesign This provides a description of the high-level components of the system and how they interact,
including details like a function’s externally controllable inputs and how an attacker could leverage
each input to cause harm or which invariants or constraints of the system are critical andmust
always be upheld.

Not all components in the audit scopemay have beenmodeled. The absence of a component in
this section does not necessarily suggest that it is safe.

5.1. Component: Controller

Registries, factories, andmanagers can be categorized as the controllers. They are capable of
deploying andmanaging specific contracts.

Registry

The ImplementationRegistry contract maintains a whitelist of implementation contract addresses.
And the VaultRegistry contract holds a whitelist of vault instance addresses, with a default cap of
1,000 vaults. The VaultRegistry contract alsomaintains information regarding the vault's
underlying asset and its implementation.

Contract addresses can be added to or removed from both registries through the VaultManager
contract.

Factory

Based on the implementation information provided by the owner, the VaultFactory contract can
deploy new vault instances by cloning the implementation or can deploy new upgradable vault
instances using ERC1967Proxy and CREATE2.

The OracleFactory contract itself manages a whitelist of oracle implementation contract
addresses. The owner of the OracleFactory contract can deploy new oracle instances by cloning
whitelisted implementations.

Manager

The DeploymentManager contract manages the VaultFactory, VaultRegistry, and
ImplementationRegistry contracts, handling the deployment and registration of new vaults, along
with the addition or removal of their implementation contracts. To deploy a new vault, the
DeploymentManager first retrieves and validates the implementation address from the
ImplementationRegistry contract, then deploys the vault via the VaultFactory contract and adds
the new vault address to the VaultRegistry contract.

The VaultManager contract is the owner of the DeploymentManager contract andmanages the
administrative functions for multiple vaults. Specifically, after deploying a new vault via the
DeploymentManager contract, it will deploy and configure the dedicatedwithdrawal component

Zellic © 2025 ← Back to Contents Page 68 of 75

Concrete Smart Contract Security Assessment June 19, 2025

for each vault — namely, theWithdrawalQueue contract and the ParkingLot contract. For more
details about the withdrawal component, please refer to section 5.3. ↗. Additionally, when
upgrading a vault, before calling the function upgradeToAndCall to execute the upgrade, the
VaultManager contract first calls the function upgradeVault of the DeploymentManager contract
to verify the upgradability of the vault and the validity of the new implementation and to update the
vault's associated entries in the VaultRegistry contract.

5.2. Component: ConcreteMultiStrategyVault

The ConcreteMultiStrategyVault contract is an ERC-4626–compliant vault that canmanage
multiple yield-generating strategies. The owner of the vault can add or remove strategies and can
set the proportion of the vault's underlying asset allocated to each strategy. Users who deposit into
the vault receive shares. The vault offers a one-stop solution for shareholders, enabling automatic
yield optimization and liquidity protection.

Deposit

When a user deposits assets into the vault via the function deposit or the function mint, the vault
mints a certain amount of shares for the user based on the amounts of total assets and total shares.
However, if the amount of shares to beminted is less than DUST, the transaction will be reverted.

If the vault is not idle, the vault will allocate the user's deposited assets to all registered strategies
according to the configured allocation ratios. Different strategies handle deposits from the vault in
different ways; refer to section 5.4. ↗ for more details.

function deposit(uint256 assets_, address receiver_)
// [...]
returns (uint256 shares)

{
// [...]

// Handle strategy allocation if vault is not idle
if (!vaultIdle) {

StrategyHelper.depositIntoStrategies(strategies, assets_,
address(this), true);
}
emit Deposit(msg.sender, receiver_, assets_, shares);

}

function depositIntoStrategies(
Strategy[] memory strategies,
uint256 assets_,
address vaultAddress,
bool isRoundingFloor

) external {

Zellic © 2025 ← Back to Contents Page 69 of 75

Concrete Smart Contract Security Assessment June 19, 2025

// [...]
uint256 len = strategies.length;
for (uint256 i; i < len;) {

// [...]
strategies[i].strategy.deposit(

assets_.mulDiv(strategies[i].allocation.amount, MAX_BASIS_POINTS,
rounding), vaultAddress

);
unchecked {

i++;
}

}
}

Withdrawal

Users can choose either the function redeem or withdraw to burn shares in exchange for the
underlying asset when the withdrawal is not paused. If the amount of shares to be burned is less
than DUST, only the function withdrawwill revert the transaction.

Because the underlying assets are distributed in the vault and various strategies, and different
strategies handle the underlying assets in different ways, some underlying assetsmay not be
immediately withdrawable. Therefore, there are two possible scenarios when a user withdraws:

1. If the total withdrawable assets are sufficient to cover the amount the user wants to
withdraw, the vault will first use the assets it holds and thenwithdraw the remaining
amount from the strategies according to the configured allocations, before sending the
assets to the receiver.

2. If the total withdrawable assets are insufficient to cover the amount the user wants to
withdraw, the vault will not send any assets to the receiver in this transaction. Instead,
the vault will create a withdrawal request and place it into the withdrawal queue.
Afterwards, when there are sufficient withdrawable assets, the owner of the vault can
claim thewithdrawal requests. Except for consuming the requests in the withdrawal
queue, themethod of transferring assets to the receiver is the same as in the first
scenario.

For withdrawals involving assets that need to bewithdrawn from strategies, the receiver may
receive an amount of assets less than expected. For details, please refer to Finding 3.2. ↗.

Reward

The owner of the vault can call the function harvestRewards to harvest rewards on every strategy.
The function harvestRewards of the strategy transfers the rewards to the vault and returns an
array recording the reward-token addresses and the effective amounts sent (excluding the

Zellic © 2025 ← Back to Contents Page 70 of 75

Concrete Smart Contract Security Assessment June 19, 2025

underlying asset). The vault then updates the rewardIndex for each reward token based on the
effective reward amount and the total shares of the vault.

function harvestRewards(bytes calldata encodedData)
external nonReentrant onlyOwner {
// [...]
for (uint256 i; i < lenStrategies;) {

// [...]
ReturnedRewards[] memory returnedRewards

= strategies[i].strategy.harvestRewards(rewardsData);
lenRewards = returnedRewards.length;
for (uint256 j; j < lenRewards;) {

uint256 amount = returnedRewards[j].rewardAmount;
address rewardToken = returnedRewards[j].rewardAddress;
if (amount != 0) {

if (rewardIndex[rewardToken] == 0) {
rewardAddresses.push(rewardToken);

}
if (totalSupply > 0) {

rewardIndex[rewardToken] += amount.mulDiv(PRECISION,
totalSupply, Math.Rounding.Floor);

}
}

// [...]
}

Before each user-balance update, rewards are distributed to the user based on the amount of
shares they hold and the difference between their userRewardIndex_ and the current
rewardIndex_ for each reward token. After distribution, the userRewardIndex_ is updated to the
current vault's rewardIndex_.

function updateUserRewardsToCurrent(
uint256 userBalance_,
address userAddress_,
address[] memory rewardAddresses_,
mapping(address => uint256) storage rewardIndex_,
mapping(address => mapping(address => uint256)) storage userRewardIndex_,
mapping(address => mapping(address => uint256))
storage totalRewardsClaimed_

) external {
uint256 len = rewardAddresses_.length;
for (uint256 i; i < len;) {

uint256 tokenRewardIndex = rewardIndex_[rewardAddresses_[i]];
uint256 _userRewardIndex

= userRewardIndex_[userAddress_][rewardAddresses_[i]];
userRewardIndex_[userAddress_][rewardAddresses_[i]]

Zellic © 2025 ← Back to Contents Page 71 of 75

Concrete Smart Contract Security Assessment June 19, 2025

= tokenRewardIndex;
if (userBalance_ != 0) {

uint256 rewardsToTransfer =
(tokenRewardIndex - _userRewardIndex).mulDiv(userBalance_,

PRECISION, Math.Rounding.Floor);
if (rewardsToTransfer != 0) {

TokenHelper.attemptSafeTransfer(
address(rewardAddresses_[i]), userAddress_,

rewardsToTransfer, false
);

// [...]
}

}

5.3. Component: Withdrawal

During the withdrawal process, when there are not enoughwithdrawable assets, the
WithdrawalQueue contract is used to store andmanage pending withdrawal requests. When
transferring assets to the receiver fails, the ParkingLot contract is used to temporarily hold the
withdrawn assets.

WithdrawalQueue

When the vault calls the function requestWithdrawal, a new WithdrawalRequest is pushed into
the array _requests, which records the following:

• cumulativeAmount—The sum of all assets submitted for withdrawals, including this
request. The amount for this withdrawal request can be derived by calculating the
difference between its cumulativeAmount and that of the previous request.

• recipient—The address that can receive the funds.
• timestamp—The block.timestampwhen the request is created.
• claimed—This indicates whether the request has been claimed.

The vault owner claimswithdrawal requests through the function batchClaimWithdrawal, which
uses the function batchClaim of theWithdrawalQueueHelper library to process requests
sequentially, starting from the first unclaimed request in the order they were added to the array
_requests. During this process, the function prepareWithdrawal of theWithdrawalQueue
contract is used to retrieve the recipient and amount for eachwithdrawal request and to check
whether the current _avaliableAssets are sufficient to fulfill the request. If so, it returns the
remaining available assets after processing this request; otherwise, it returns an uninitialized
avaliableAssets (see Finding 3.7. ↗ for details).

function prepareWithdrawal(uint256 _requestId, uint256 _avaliableAssets)
external

Zellic © 2025 ← Back to Contents Page 72 of 75

Concrete Smart Contract Security Assessment June 19, 2025

onlyOwner
returns (address recipient, uint256 amount, uint256 avaliableAssets)

{
// [...]
amount = request.cumulativeAmount - prevRequest.cumulativeAmount;

if (_avaliableAssets >= amount) {
assert(_requestsByOwner[recipient].remove(_requestId));
avaliableAssets = _avaliableAssets - amount;
request.claimed = true;
// [...]

}
}

When the available assets are insufficient or the number of processed requests reaches the
maximum value set by the owner, the function batchClaimwill call the function _finalize of the
WithdrawalQueue contract to update the storage variable lastFinalizedRequestId, which
records the last claimed request ID.

ParkingLot

When transferring assets to the receiver fails, the vault will deposit the withdrawn assets into the
ParkingLot contract. This contract records the total amount of assets each receiver is entitled to
receive, as well as the timestamp of each receiver's most recent deposit by the vault.

Users canwithdraw temporarily stored assets at any time through the function withdraw of the
ParkingLot contract. However, if the assets remain unclaimed for more than one year since the last
deposit, the _rescuer canwithdraw them using the function rescueFunds.

5.4. Component: Strategies

Different strategies offer distinct approaches tomanaging assets and generating yields. They all
inherit from the StrategyBase contract, which implements the basic functionality of a strategy. The
basic implemented functions includemanaging the reward token and configuring the fee settings
as well as fundamental interactions when a vault deposits to the strategy, withdraws from the
strategy, or harvests rewards, and so on. Each strategy can overwrite functions _protocolDeposit
and _protocolWithdraw to implement specific ways of handling the asset during deposits and
withdrawals. However, there are some nongeneric functions that must be implemented by each
individual strategy, such as the following:

• _totalAssets—This function allows each strategy to implement its own custom logic
for retrieving the total amount of underlying assets based on its implementation.

• _handleRewardsOnWithdraw—This function is called during a withdrawal operation to
accrue rewards before executing the function _protocolWithdraw.

• _getRewardsToStrategy—This function is used to collect rewards into the strategy.

Zellic © 2025 ← Back to Contents Page 73 of 75

Concrete Smart Contract Security Assessment June 19, 2025

AaveV3Strategy

This strategy earns yield through the Aave V3 protocol. It supplies the deposited assets to the Aave
liquidity pool, and it retrieves the assets from the pool on withdrawal. Rewards can be collected by
calling the function claimAllRewards on the aaveIncentives.

MorphoVaultStrategy

This strategy earns yield through theMorpho Vaults. It forwards deposits to aMorpho Vault and
retrieves them onwithdrawal.

If the isBackgroundSwapEnabled is true, then the underlying asset of theMorpho Vault is not the
underlying asset of the strategy. So, before depositing into theMorpho Vault, the underlying asset
being deposited will be swapped into theMorpho Vault's underlying asset via Uniswap V3. And the
Morpho Vault's underlying asset will be swapped back into the strategy's underlying asset during
withdrawal.

The function _getRewardsToStrategy can claim rewards fromMorpho Universal Rewards
Distributor contracts with the vault's owner-provided data. And if the isAutoCompoundingEnabled
is true and the morphoRewardToken balance of the strategy is not less than the
minRewardAmountForCompounding, the morphoRewardTokenwill be swapped into the strategy's
underlying asset, and then these assets will be deposited into theMorpho Vault via the function
_protocolDeposit. The function _handleRewardsOnWithdraw of this strategy cannot claim
rewards; it will only compound rewards if the isAutoCompoundingEnabled is true.

MultiSigStrategy

This strategy simply forwards deposits to amulti-sig wallet and retrieves them onwithdrawal. It
does not generate any rewards. If the withdrawEnabled is true, withdrawals are not allowed from
this strategy.

The owner can rescue any assets held by this strategy, including the underlying asset.

Zellic © 2025 ← Back to Contents Page 74 of 75

Concrete Smart Contract Security Assessment June 19, 2025

6. Assessment Results During our assessment on the scoped Concrete contracts, we discovered 25 findings. No critical
issues were found. Two findings were of high impact, six were of medium impact, eight were of low
impact, and the remaining findings were informational in nature.

At the time of our assessment, the ConcreteMultiStrategyVault was deployed to several networks,
including Ethereum, Corn, Morph, and Berachain. The other reviewed codewas not yet deployed.

6.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommendmultiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, andwe encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2025 ← Back to Contents Page 75 of 75

	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Concrete
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Incorrect performance-fee calculation can lead to a denial-of-service condition
	Unhandled code path in WithdrawalQueueHelper._withdrawStrategyFunds could result in users receiving less assets than they are entitled to
	Potential underflow in MorphoVaultStrategy._protocolWithdraw could lead to withdrawal failure
	The feesUpdatedAt state variable is used before initialization
	The protectStrategy state variable is not updated during emergencyRemoveStrategy call
	Incorrect L2 sequencer uptime feed integration
	Unclaimed withdrawal requests may be incorrectly finalized
	Incorrect swap logic in _protocolWithdraw
	The VaultManager contract lacks the code to call the function emergencyRemoveStrategy
	Incorrect transfer amount in the function rescueFunds
	The function redeem lacks dust-amount check
	Inconsistent handling of infinite allowance in _withdraw
	Lack of support for the 0.01% fee tier for swaps in MorphoVaultStrategy
	Function getAvailableAssetsForWithdrawal should return zero when withdrawEnabled is false
	Function changeAllocations does not check vaultIdle status before redistributing assets
	Incorrect rounding direction in previewMint
	The fees charged to the feeRecipient are inconsistent between functions deposit and mint
	The BTCLinkedPriceFeed contract does not initialize the owner
	Insufficient validation of _requestId
	Unchecked return value in setParkingLot
	Incorrect withdrawable check in _withdrawStrategyFunds
	ConcreteMultiStrategy should inherit from ReentrancyGuardUpgradeable instead of ReentrancyGuard
	Incorrect implementation of max functions in ConcreteMultiStrategy
	Strategy rewards accrue after the share price has been calculated
	Incorrect use of the function _getRewardTokens to initialize the rewardTokens

	Discussion
	The ConcreteOracle.getAssetPrice should ensure the returned price uses eight decimals
	Unused _decimals variable in strategies
	Test suite

	System Design
	Component: Controller
	Component: ConcreteMultiStrategyVault
	Component: Withdrawal
	Component: Strategies

	Assessment Results
	Disclaimer

