
// Security Assessment 05.16.2025 - 05.16.2025

Vault Contract Update
(Withdrawal Queue
Delay)
Blueprint Finance

Va u l t C o n t ra c t U p d a t e (W i t h d rawa l Q u e u e D e l ay) -

B l u e p r i n t F i n a n c e

Prepared by: HALBORN

Last Updated 05/20/2025

Date of Engagement: May 16th, 2025 - May 16th, 2025

S u m m a r y

NO REPORTED FINDINGS TO ADDRESS

ALL FINDINGS

0

CRITICAL

0

HIGH

0

MEDIUM

0

LOW

0

INFORMATIONAL

0

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Caveats
4. Test approach and methodology
5. Static analysis report

5.1 Description
5.2 Output

6. Risk methodology
7. Scope
8. Assessment summary & findings overview
9. Findings & Tech Details

1 . I n t r o d u c t i o n

Blueprint Finance engaged Halborn to conduct a security assessment on their smart contracts
beginning on May 16th, 2025 and ending on May 16th, 2025. The security assessment was scoped to the
smart contracts provided to Halborn. Commit hashes and further details can be found in the Scope
section of this report.

The Blueprint Finance codebase in scope consists of updates made to an ERC4626-compliant vault
implementation with a newly added feature that allows administrators to force all withdrawals through a
queue system.

2. A s s e s s m e n t S u m m a r y

Halborn was provided 1 day for the engagement and assigned 1 full-time security engineer to review
the security of the smart contracts in scope. The engineer is a blockchain and smart contract security
expert with advanced penetration testing and smart contract hacking skills, and deep knowledge of
multiple blockchain protocols.

The purpose of the assessment is to:

Identify potential security issues within the smart contracts.
Ensure that smart contract functionality operates as intended.

In summary, Halborn did not identify any security vulnerabilities in the code within the engagement
scope. The added functionality to force withdrawals through the queue was implemented securely with
proper access controls and event logging.

3. C a v e a t s

The current security assessment was focused solely on evaluating the changes introduced in the
following commit: https://github.com/Blueprint-Finance/sc_earn-
v1/commit/1f48ea98f3326cde22f35c1b68fae92820403671.

It's important to note that despite these caveats, the security assessment aimed to provide a thorough
evaluation of the protocol's security posture. However, the limitations mentioned above should be
considered when interpreting the findings and recommendations.

https://github.com/Blueprint-Finance/sc_earn-v1/commit/1f48ea98f3326cde22f35c1b68fae92820403671#diff-d80d6bd664c19d43b1f4a5e8c7be73b086900ef1d07bd1821cf2d58671adf202
https://github.com/Blueprint-Finance/sc_earn-v1/commit/1f48ea98f3326cde22f35c1b68fae92820403671#diff-d80d6bd664c19d43b1f4a5e8c7be73b086900ef1d07bd1821cf2d58671adf202

4. Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of manual review of the code and automated security testing to
balance efficiency, timeliness, practicality, and accuracy in regard to the scope of this assessment. While
manual testing is recommended to uncover flaws in logic, process, and implementation; automated
testing techniques help enhance coverage of smart contracts and can quickly identify items that do not
follow security best practices.

The following phases and associated tools were used throughout the term of the assessment:

Research into architecture, purpose and use of the platform.
Smart contract manual code review and walkthrough to identify any logic issue.
Thorough assessment of safety and usage of critical Solidity variables and functions in scope that

could led to arithmetic related vulnerabilities.
Local testing with custom scripts (Foundry).
Fork testing against main networks (Foundry).
Static analysis of security for scoped contract, and imported functions (Slither).

5. S t a t i c A n a l y s i s R e p o r t

5.1 D e s c r i p t i o n

Halborn used automated testing techniques to enhance the coverage of certain areas of the smart
contracts in scope. Among the tools used was Slither, a Solidity static analysis framework. After
Halborn verified the smart contracts in the repository and was able to compile them correctly into their
abis and binary format, Slither was run against the contracts. This tool can statically verify
mathematical relationships between Solidity variables to detect invalid or inconsistent usage of the
contracts' APIs across the entire code-base.

The security team assessed all findings identified by the Slither software, however, findings with related
to external dependencies are not included in the below results for the sake of report readability.

5.2 O u t p u t

There were no findings obtained as a result of the Slither scan.

6. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity
Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means
by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

6.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory
challenges.

M E T R I C S :

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

M E

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

6.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

M E

E

E = m ∏ e

M I

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

6.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

M I

I

I = max(m) +I

4
m − max(m)∑ I I

C

r

s

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

C

C = rs

S

S = min(10,EIC ∗ 10)

7. S C O P E

F ILES AND REPOSITORY

(a) Repository: sc_earn-v1

(b) Assessed Commit ID: 1f48ea9

(c) Items in scope:

src/interfaces/IConcreteMultiStrategyVault.sol
src/libraries/WithdrawalQueueHelper.sol
src/vault/ConcreteMultiStrategyVault.sol

Out-of-Scope: Third party dependencies and economic attacks.

Out-of-Scope: New features/implementations after the remediation commit IDs.

8 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

0

HIGH

0

MEDIUM

0

LOW

0

INFORMATIONAL

0

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

https://github.com/Blueprint-Finance/sc_earn-v1

9 . F I N D I N G S & T EC H D E TA I L S

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

