
// Smart Contract Security Assessment 12.27.2024 - 12.30.2024

VaultManager
Concrete

Va u l t M a n a g e r - C o n c r e t e

Prepared by: HALBORN

Last Updated 03/13/2025

Date of Engagement by: December 27th, 2024 - December 30th, 2024

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS

2

CRITICAL

0

HIGH

0

MEDIUM

0

LOW

1

INFORMATIONAL

1

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Lack of storage gap in upgradeable contract
7.2 Unused import

8. Automated Testing

1 0 0%

1 . I n t r o d u c t i o n

Concrete engaged Halborn to conduct a security assessment on their smart contracts beginning on
December 27th and ending on December 30th, 2024. The security assessment was scoped to the
smart contracts provided to the Halborn team.

Commit hashes and further details can be found in the Scope section of this report.

2. A s s e s s m e n t S u m m a r y

The Concrete team at Halborn assigned a full-time security engineer to assess the security of the
smart contracts. The security engineer is a blockchain and smart-contract security expert with
advanced penetration testing, smart-contract hacking, and deep knowledge of multiple blockchain
protocols.

The purpose of this assessment is to:

Ensure that smart contract functions operate as intended.
Identify potential security issues with the smart contracts.

No major issues were identified.

3. Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of manual review of the code and automated security testing to
balance efficiency, timeliness, practicality, and accuracy in regard to the scope of the smart contract
assessment. While manual testing is recommended to uncover flaws in logic, process, and
implementation; automated testing techniques help enhance coverage of smart contracts and can
quickly identify items that do not follow security best practices. The following phases and associated
tools were used throughout the term of the assessment:

Research into the architecture, purpose, and use of the platform.
Smart contract manual code review and walkthrough to identify any logic issue.
Thorough assessment of safety and usage of critical Solidity variables and functions in scope

that could lead to arithmetic related vulnerabilities.
Manual testing by custom scripts.
Graphing out functionality and contract logic/connectivity/functions (solgraph).
Static Analysis of security for scoped contract, and imported functions. (Slither).
Local or public testnet deployment (Foundry, Remix IDE).

4. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a
Severity Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring
System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical
means by which vulnerabilities can be exploited and Impact describes the consequences of a
successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as
the number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of
risk to address the most critical issues in a timely manner.

4.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational
cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and
regulatory challenges.

M E T R I C S :

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due
to a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users
only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

M ​E

E

E = m ​∏ e

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

C

r

s

C

C = rs

S

S = min(10,EIC ∗ 10)

SEVERITY SCORE VALUE RANGE

Informational 0 - 1.9

5. S C O P E

F ILES AND REPOSITORY

(a) Repository: sc_earn-v1

(b) Assessed Commit ID: f730ab1

(c) Items in scope:

src/managers/VaultManager.sol

Out-of-Scope: Third party dependencies and economic attacks.

REMEDIAT ION COMMIT ID :

e49a382

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

0

HIGH

0

MEDIUM

0

LOW

1

INFORMATIONAL

1

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

LACK OF STORAGE GAP IN UPGRADEABLE
CONTRACT

LOW SOLVED - 03/07/2025

https://github.com/Blueprint-Finance/sc_earn-v1
https://github.com/Blueprint-Finance/sc_earn-v1/commit/e49a382cf1a061563e7b7f0bc620aeb307cb400a

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

UNUSED IMPORT INFORMATIONAL SOLVED - 03/07/2025

7. F I N D I N G S & T EC H D E TA I L S

7.1 L AC K O F STO R AG E G A P I N U P G R A D E A B L E C O N T R AC T

// LOW

Description

The VaultManager contract is designed to be used with the UUPS proxy pattern. However, it lacks
storage gaps. Storage gaps are essential for ensuring that new state variables can be added in
future upgrades without affecting the storage layout of inheriting child contracts. Without it, any
addition of new state variables in future contract versions can lead to storage collisions.

BVSS

AO:A/AC:L/AX:L/C:N/I:N/A:L/D:N/Y:N/R:N/S:U (2.5)

Recommendation
It is recommended to add a storage gap uint256[50] private __gap as the last storage variable of
the mentioned contracts.

Remediation

SOLVED : The Concrete team solved the issue. A storage gap was added to the contract.

Remediation Hash
https://github.com/Blueprint-Finance/sc_earn-v1/commit/e49a382cf1a061563e7b7f0bc620aeb307
cb400a

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:L/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:L/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:L/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:L/D:N/Y:N/R:N/S:U
https://github.com/Blueprint-Finance/sc_earn-v1/commit/e49a382cf1a061563e7b7f0bc620aeb307cb400a
https://github.com/Blueprint-Finance/sc_earn-v1/commit/e49a382cf1a061563e7b7f0bc620aeb307cb400a

7. 2 U N U S E D I M P O RT

// INFORMATIONAL

Description
In the VaultManager contract, there is an import that is declared but never used.

import {ImplementationData, IImplementationRegistry} from
"../interfaces/IImplementationRegistry.sol";

BVSS

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation
It is recommended to remove the unused import.

Remediation

SOLVED : The Concrete team solved the issue. The mentioned import was removed.

Remediation Hash
https://github.com/Blueprint-Finance/sc_earn-v1/commit/e49a382cf1a061563e7b7f0bc620aeb307
cb400a

References
Blueprint-Finance/sc_earn-v1/src/managers/VaultManager.sol#L11

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://github.com/Blueprint-Finance/sc_earn-v1/commit/e49a382cf1a061563e7b7f0bc620aeb307cb400a
https://github.com/Blueprint-Finance/sc_earn-v1/commit/e49a382cf1a061563e7b7f0bc620aeb307cb400a
https://github.com/Blueprint-Finance/sc_earn-v1/blob/f730ab1886afff47454d05eb55626970fec279e7/src/managers/VaultManager.sol#L11

8 . AU TO M AT E D T EST I N G

S t a t i c A n a l y s i s R e p o r t

D e s c r i p t i o n

Halborn used automated testing techniques to enhance the coverage of certain areas of the scoped
contracts. Among the tools used was Slither, a Solidity static analysis framework. After Halborn
verified all the contracts in the repository and was able to compile them correctly into their ABI and
binary formats, Slither was run on the all-scoped contracts. This tool can statically verify
mathematical relationships between Solidity variables to detect invalid or inconsistent usage of the
contracts' APIs across the entire code-base.

The security team assessed all findings identified by the Slither software and everything was
categorised as false positives.

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or
immediately following any material changes to the codebase, whichever comes first. This approach is crucial for
maintaining the project’s integrity and addressing potential vulnerabilities introduced by code modifications.

