
// Smart Contract Security Assessment 02.05.2025 - 02.11.2025

Upgradeable/Migration
Assessment
Concrete

U p g ra d ea b l e/ M i g ra t i o n As s e s s m e n t - C o n c r e t e

Prepared by: HALBORN

Last Updated 03/13/2025

Date of Engagement by: February 5th, 2025 - February 11th, 2025

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS

4

CRITICAL

0

HIGH

0

MEDIUM

0

LOW

1

INFORMATIONAL

3

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Lack of timelock for critical functions
7.2 Centralization risk
7.3 Duplicate declaration prevents compilation
7.4 Missing events for state changes

8. Automated Testing

1 0 0%

1 . I n t r o d u c t i o n

Concrete engaged Halborn to conduct a security assessment on smart contracts beginning on
February 5th, 2025 and ending on February 11th, 2025. The security assessment was scoped to the
smart contracts provided to the Halborn team. Commit hashes and further details can be found in the
Scope section of this report.

2. A s s e s s m e n t S u m m a r y

The team at Halborn dedicated 5 days for the engagement and assigned one full-time security
engineer to evaluate the security of the smart contract.

The security engineer is a blockchain and smart-contract security expert with advanced penetration
testing, smart-contract hacking, and deep knowledge of multiple blockchain protocols

The purpose of this assessment is to:

Ensure that smart contract functions operate as intended.
Identify potential security issues with the smart contracts.

In summary, Halborn identified some improvements to reduce the likelihood and impact of risks, which
were partially addressed by the Concrete team. The main ones were the following:

Implement time locks for critical functionality.
Disable the initializer in the implementation contract.

3. Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of manual, semi-automated and automated security testing to
balance efficiency, timeliness, practicality, and accuracy regarding the scope of this assessment.
While manual testing is recommended to uncover flaws in logic, process, and implementation;
automated testing techniques help enhance coverage of the code and can quickly identify items that
do not follow security best practices. The following phases and associated tools were used
throughout the term of the assessment:

Research into architecture and purpose.
Smart contract manual code review and walk-through.
Manual assessment of use and safety for the critical Solidity variables and functions in scope to

identify any vulnerability classes
Manual testing by custom scripts.
Static Analysis of security for scoped contract, and imported functions. (Slither)
Local deployment and testing (Foundry)

4. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a
Severity Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring
System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical
means by which vulnerabilities can be exploited and Impact describes the consequences of a
successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as
the number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of
risk to address the most critical issues in a timely manner.

4.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational
cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and
regulatory challenges.

M E T R I C S :

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due
to a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users
only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

M ​E

E

E = m ​∏ e

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

C

r

s

C

C = rs

S

S = min(10,EIC ∗ 10)

SEVERITY SCORE VALUE RANGE

Informational 0 - 1.9

5. S C O P E

F ILES AND REPOSITORY

(a) Repository: sc_earn-v1

(b) Assessed Commit ID: 9814080

(c) Items in scope:

src/strategies/migration/MigrationStrategy.sol
src/vault/ConcreteMultiStrategyVaultUpgradeableV1.sol

Out-of-Scope: Third party dependencies and economic attacks.

REMEDIAT ION COMMIT ID :

6e01918

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

0

HIGH

0

MEDIUM

0

LOW

1

INFORMATIONAL

3

https://github.com/Blueprint-Finance/sc_earn-v1

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

LACK OF TIMELOCK FOR CRITICAL FUNCTIONS LOW
RISK ACCEPTED -

03/12/2025

CENTRALIZATION RISK INFORMATIONAL
ACKNOWLEDGED -

03/12/2025

DUPLICATE DECLARATION PREVENTS
COMPILATION

INFORMATIONAL SOLVED - 03/07/2025

MISSING EVENTS FOR STATE CHANGES INFORMATIONAL SOLVED - 03/07/2025

7. F I N D I N G S & T EC H D E TA I L S

7.1 L AC K O F T I M E LO C K FO R C R I T I CA L F U N C T I O N S

// LOW

Description
Critical functions that affect user funds and contract state can be executed immediately, like
MigrationStrategy::pullShares, without any time delay, giving users no time to react
to potentially harmful changes.

 functionfunction pullSharespullShares(()) externalexternal onlyOwner onlyOwner {{
 uint256uint256 shares shares == targetVault targetVault..balanceOfbalanceOf((addressaddress((thisthis))));;
 IERC20IERC20((addressaddress((targetVaulttargetVault))))..safeTransfersafeTransfer((migrationFacilitatormigrationFacilitator,, s s
 emitemit SharesPulledSharesPulled((sharesshares));;
 }}

Impact:

No reaction time for users before major changes
Increased risk from compromised owner keys
Reduced trust in migration process

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:H/D:H/Y:N (2.1)

Recommendation
It is recommended the following:

Implement timelock for critical functions
Add delay period before state changes take effect

Remediation

RISK ACCEPTED: The Concrete team accepted the risk for this finding.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:H/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:H/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:H/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:H/D:H/Y:N

7. 2 C E N T R A L I Z AT I O N R I S K

// INFORMATIONAL

Description
The contract implements critical functions (pullShares(), toggleWithdrawDisabled(),
setMigrationFacilitator()) that are only accessible by the owner, creating a single point of failure
and trust requirement.

Impact:

Single account can control migration process
Owner can prevent withdrawals at any time
Owner can redirect shares to any address

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:H/Y:N (1.9)

Recommendation
It is recommended the following:

Implement a multi-signature mechanism for critical functions.
Add timelock delays for sensitive operations.

Remediation

ACKNOWLEDGED: The Concrete team acknowledged the finding.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:H/Y:N

7. 3 D U P L I CAT E D EC L A R AT I O N P R EV E N TS C O M P I L AT I O N

// INFORMATIONAL

Description
The WithdrawDisabled() error is declared twice in the codebase:

In src/strategies/migration/MigrationStrategy.sol
In src/interfaces/Errors.sol

This causes a compilation error as Solidity does not allow duplicate declarations of custom errors.

BVSS

AO:A/AC:L/AX:L/R:F/S:U/C:N/A:L/I:N/D:N/Y:N (0.6)

Recommendation
Remove the error declaration from MigrationStrategy.sol.

Remediation

SOLVED: The suggested mitigation was implemented.

Remediation Hash
6e01918b009fb42c52a1fa26110ba522a60f3a54

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:L/I:N/D:N/Y:N

7. 4 M I S S I N G EV E N TS FO R STAT E C H A N G ES

// INFORMATIONAL

Description
The contract modifies critical state variables without emitting corresponding events. Specifically,
toggleWithdrawDisabled() and setMigrationFacilitator() functions change important contract
states without event emissions.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Emit event for important state changes:

// Add events// Add events
eventevent WithdrawStateChangedWithdrawStateChanged((boolbool isDisabled isDisabled));;
eventevent MigrationFacilitatorChangedMigrationFacilitatorChanged((addressaddress indexedindexed oldFacilitator oldFacilitator,, addressaddress

// Modify functions// Modify functions
functionfunction toggleWithdrawDisabledtoggleWithdrawDisabled(()) externalexternal onlyOwner onlyOwner {{
 withdrawDisabled withdrawDisabled == !!withdrawDisabledwithdrawDisabled;;
 emitemit WithdrawStateChangedWithdrawStateChanged((withdrawDisabledwithdrawDisabled));;
}}

functionfunction setMigrationFacilitatorsetMigrationFacilitator((addressaddress migrationFacilitator_ migrationFacilitator_)) externalexternal
 addressaddress oldFacilitator oldFacilitator == migrationFacilitator migrationFacilitator;;
 migrationFacilitator migrationFacilitator == migrationFacilitator_ migrationFacilitator_;;
 emitemit MigrationFacilitatorChangedMigrationFacilitatorChanged((oldFacilitatoroldFacilitator,, migrationFacilitator migrationFacilitator
}}

Remediation

SOLVED: The suggested mitigation was implemented.

Remediation Hash
6e01918b009fb42c52a1fa26110ba522a60f3a54

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

8 . AU TO M AT E D T EST I N G

I n t r o d u c t i o n

Halborn used automated testing techniques to enhance the coverage of certain areas of the smart
contracts in scope. Among the tools used was Slither, a Solidity static analysis framework. After
Halborn verified the smart contracts in the repository and was able to compile them correctly into
their ABIs and binary format, Slither was run against the contracts. This tool can statically verify
mathematical relationships between Solidity variables to detect invalid or inconsistent usage of the
contracts' APIs across the entire code-base.
The security team conducted a comprehensive review of findings generated by the Slither static
analysis tool. No major issues were found for contracts in-scope. The vulnerabilities related to
reentrancies are a false positives as call is made to a trusted contract.

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or
immediately following any material changes to the codebase, whichever comes first. This approach is crucial for
maintaining the project’s integrity and addressing potential vulnerabilities introduced by code modifications.

