
// Security Assessment 09.17.2025 - 09.29.2025

Upgradable Multisig
and Queue Changes
Blueprint Finance

U p g ra d a b l e M u l t i s i g a n d Q u e u e C h a n g e s - B l u e p r i n t

F i n a n c e

Prepared by: HALBORN

Last Updated 10/06/2025

Date of Engagement: September 17th, 2025 - September 29th, 2025

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS

1 0

CRITICAL

0

HIGH

0

MEDIUM

1

LOW

3

INFORMATIONAL

6

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Burned shares cause reward loss during pending withdrawals
7.2 Previewwithdraw underestimates required shares due to rounding mismatch
7.3 Reward allocation susceptible to sniping
7.4 Missing rate change validation in asset adjustment after unpause
7.5 Withdrawal queue maxredeem does not account for withdrawal fee
7.6 Centralization risks
7.7 Missing validation for reward token and vault fee values
7.8 Non-standard/fee-on-transfer tokens can inflate shares
7.9 Fee bypass when feerecipient is the caller
7.10 Receiver not validated against whitelist

1 0 0%

1 . I n t r o d u c t i o n

Blueprint Finance engaged Halborn to perform a security assessment of their smart contracts from
September 17th, 2025 to September 29th, 2025. The assessment scope was limited to the smart
contracts provided to Halborn. Commit hashes and additional details are available in the Scope section of
this report.

The Blueprint Finance codebase in scope consists of smart contracts implementing a multi-strategy
ERC4626 compliant vault with modular fee logic, strategy allocation, configurable whitelist controls, and
a multi-signature custody strategy.

2. A s s e s s m e n t S u m m a r y

Halborn was allocated 9 days for this engagement and assigned 1 full-time security engineer to
conduct a comprehensive review of the smart contracts within scope. The engineer is an expert in
blockchain and smart contract security, with advanced skills in penetration testing and smart contract
exploitation, as well as extensive knowledge of multiple blockchain protocols.

The objectives of this assessment are to:

Identify potential security vulnerabilities within the smart contracts.
Verify that the smart contract functionality operates as intended.

In summary, Halborn identified several areas for improvement to reduce the likelihood and impact of
security risks, which were mostly acknowledged by the Blueprint Finance team . The primary
recommendations were as follows:

Update the reward calculation to exclude shares pending withdrawal from
totalSupply() when distributing rewards, ensuring only active shares are considered.

Align the rounding logic in previewWithdraw with the actual withdrawal calculation
by using Math.Rounding.Ceil for the fee .

Implement a mechanism to prevent immediate withdrawals after deposits, such as a
short lockup period or withdrawal delay, to ensure users cannot game the reward
distribution.

Enforce the rate change threshold in unpauseAndAdjustTotalAssets() by calling
_validateRateChange() before updating asset balances.

3. Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn conducted a combination of manual code review and automated security testing to balance
efficiency, timeliness, practicality, and accuracy within the scope of this assessment. While manual
testing is crucial for identifying flaws in logic, processes, and implementation, automated testing
enhances coverage of smart contracts and quickly detects deviations from established security best
practices.

The following phases and associated tools were employed throughout the term of the assessment:

Research into the platform's architecture, purpose and use.
Manual code review and walkthrough of smart contracts to identify any logical issues.
Comprehensive assessment of the safety and usage of critical Solidity variables and functions

within scope that could lead to arithmetic-related vulnerabilities.
Local testing using custom scripts (Foundry).
Fork testing against main networks (Foundry).
Static security analysis of scoped contracts, and imported functions (Slither).

4. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity
Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means
by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

4.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory
challenges.

M E T R I C S :

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

M ​E

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (C:N)
Low (C:L)

Medium (C:M)
High (C:H)

Critical (C:C)

0
0.25
0.5

0.75
1

M ​E

E

E = m ​∏ e

M ​I

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

C

r

s

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

C

C = rs

S

S = min(10,EIC ∗ 10)

5. S C O P E

REPOSITORY

(a) Repository: sc_earn-v1

(b) Assessed Commit ID: 51248b8

(c) Items in scope:

src/strategies/MultiSigStrat/MultiSigStrategy.sol
src/strategies/StrategyBase.sol
src/vault/ConcreteMultiStrategyVault.sol

Out-of-Scope: Third party dependencies and economic attacks.

REMEDIAT ION COMMIT ID :

509af24

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

0

HIGH

0

MEDIUM

1

LOW

3

INFORMATIONAL

6

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

BURNED SHARES CAUSE REWARD LOSS DURING
PENDING WITHDRAWALS

MEDIUM
NOT APPLICABLE -

10/01/2025

https://github.com/Blueprint-Finance/sc_earn-v1
https://github.com/Blueprint-Finance/sc_earn-v1/commit/509af244fdab377ea04580df004e433cbb1f532c

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

PREVIEWWITHDRAW UNDERESTIMATES REQUIRED
SHARES DUE TO ROUNDING MISMATCH

LOW SOLVED - 10/01/2025

REWARD ALLOCATION SUSCEPTIBLE TO SNIPING LOW
NOT APPLICABLE -

10/01/2025

MISSING RATE CHANGE VALIDATION IN ASSET
ADJUSTMENT AFTER UNPAUSE

LOW
RISK ACCEPTED -

10/01/2025

WITHDRAWAL QUEUE MAXREDEEM DOES NOT
ACCOUNT FOR WITHDRAWAL FEE

INFORMATIONAL
ACKNOWLEDGED -

10/01/2025

CENTRALIZATION RISKS INFORMATIONAL
ACKNOWLEDGED -

10/01/2025

MISSING VALIDATION FOR REWARD TOKEN AND VAULT
FEE VALUES

INFORMATIONAL
ACKNOWLEDGED -

10/01/2025

NON-STANDARD/FEE-ON-TRANSFER TOKENS CAN
INFLATE SHARES

INFORMATIONAL
ACKNOWLEDGED -

10/01/2025

FEE BYPASS WHEN FEERECIPIENT IS THE CALLER INFORMATIONAL
ACKNOWLEDGED -

10/01/2025

RECEIVER NOT VALIDATED AGAINST WHITELIST INFORMATIONAL
ACKNOWLEDGED -

10/01/2025

7. F I N D I N G S & T EC H D E TA I L S

7.1 B U R N E D S H A R ES CAU S E R E WA R D LO S S D U R I N G

P E N D I N G WI T H D R AWA L S

// MEDIUM

Description
In the ConcreteMultiStrategyVault when isQueueMandatory is enabled, withdrawals are processed
through a queue. When a user requests a withdrawal, their shares are burned immediately in the
_redeem() function:

However, the vault’s totalSupply() function still includes these pending withdrawal shares until the
owner/operator processes the queue with batchClaimWithdrawal() :

If harvestRewards() is called while there are pending withdrawals, the reward calculation uses a
totalSupply_ that includes shares which have already been burned and are no longer eligible for
rewards.

functionfunction _redeem_redeem((uint256uint256 sharesToRedeem sharesToRedeem,, addressaddress receiver_ receiver_,, addressaddress owner_ owner_,, uint256uint256 feeShares feeShares,, uu
 privateprivate
{{
 ifif ((withdrawalsPausedwithdrawalsPaused)) revertrevert WithdrawalsPausedWithdrawalsPaused(());;
 ifif ((msgmsg..sender sender !=!= owner_ owner_)) {{
 _spendAllowance_spendAllowance((owner_owner_,, msg msg..sendersender,, sharesToRedeem sharesToRedeem));;
 }}
 _burn_burn((owner_owner_,, sharesToRedeem sharesToRedeem));;
 ifif ((feeShares feeShares >> 00)) _mint_mint((feeRecipientfeeRecipient,, feeShares feeShares));;
 uint256uint256 availableAssetsForWithdrawal availableAssetsForWithdrawal == getAvailableAssetsForWithdrawalgetAvailableAssetsForWithdrawal(());;
 WithdrawalQueueHelper WithdrawalQueueHelper..processWithdrawalprocessWithdrawal((
 assets assets,,
 sharesToRedeem sharesToRedeem -- feeShares feeShares,,
 receiver_ receiver_,,
 availableAssetsForWithdrawal availableAssetsForWithdrawal,,
 assetasset(()),,
 addressaddress((withdrawalQueuewithdrawalQueue)),,
 minQueueRequest minQueueRequest,,
 strategies strategies,,
 parkingLot parkingLot,,
 isQueueMandatory isQueueMandatory
));;
 emitemit WithdrawWithdraw((msgmsg..sendersender,, receiver_ receiver_,, owner_ owner_,, assets assets,, sharesToRedeem sharesToRedeem));;
}}

666666
667667
668668
669669
670670
671671
672672
673673
674674
675675
676676
677677
678678
679679
680680
681681
682682
683683
684684
685685
686686
687687
688688
689689

functionfunction totalSupplytotalSupply(()) publicpublic viewview overrideoverride((ERC20UpgradeableERC20Upgradeable,, IERC20 IERC20)) returnsreturns ((uint256uint256 total total)) {{
 total total == VaultActionsHelper VaultActionsHelper..getTotalSupplygetTotalSupply((supersuper..totalSupplytotalSupply(()),, withdrawalQueue withdrawalQueue));;
}}

731731
732732
733733

functionfunction harvestRewardsharvestRewards((bytesbytes calldatacalldata encodedData encodedData)) externalexternal nonReentrant onlyOwner nonReentrant onlyOwner {{
 RewardsHelper RewardsHelper..harvestRewardsharvestRewards((strategiesstrategies,, encodedData encodedData,, totalSupplytotalSupply(()),, rewardIndex rewardIndex,, rewardAddres rewardAddres
 emitemit RewardsHarvestedRewardsHarvested(());;
}}

11341134
11351135
11361136
11371137

This causes a portion of the rewards to become unclaimable in the protocol. Remaining users also receive
less than their fair share.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:M (5.0)

Recommendation
Update the reward calculation to exclude shares pending withdrawal from totalSupply() when
distributing rewards, ensuring only active shares are considered.

Remediation Comment

NOT APPLICABLE: It has been concluded that this issue is not applicable, as stated by the Blueprint
Finance team:

We use the queue only for multisig strategies, and usually the on-chain strategies
(Aave/Compound) are used for atomic vault purposes. Second, we are not using on-chain rewards;
instead, we focus on off-chain rewards calculation based on user shares. So far, all our vaults rely
on off-chain rewards. Also, v2 vaults are coming, and while the rewards logic is part of the initial
architecture, it is currently not in use. Since it is not a pressing issue, we would like to skip it. We do
not have rewards on the multisig strategy; therefore, this issue is not applicable.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:M

7. 2 P R EV I E WWI T H D R AW U N D E R EST I M AT ES R EQ U I R E D

S H A R ES D U E TO RO U N D I N G M I S M ATC H

// LOW

Description
The previewWithdraw() function in ConcreteMultiStrategyVault is intended to let users estimate
how many shares they need to burn to withdraw a given amount of assets. However, it uses
Math.Rounding.Floor when calculating the withdrawal fee:

In contrast, the actual withdrawal logic in withdraw() uses Math.Rounding.Ceil for the same
calculation:

As a result, previewWithdraw() can underestimate the number of shares required, causing user
transactions to revert if they rely on the previewed value.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:N/D:N/Y:N (2.5)

Recommendation
Align the rounding logic in previewWithdraw with the actual withdrawal calculation by using
Math.Rounding.Ceil for the fee. This ensures previews accurately reflect the required shares for
withdrawal.

Remediation Comment

SOLVED: The Blueprint Finance team solved this finding in the specified commit by following the
mentioned recommendation.

Remediation Hash
https://github.com/Blueprint-Finance/sc_earn-v1/commit/509af244fdab377ea04580df004e433cbb1f53
2c

functionfunction previewWithdrawpreviewWithdraw((uint256uint256 assets_ assets_)) publicpublic viewview override override returnsreturns ((uint256uint256 shares shares)) {{
 shares shares == _convertToShares_convertToShares((assets_assets_,, Math Math..RoundingRounding..CeilCeil));;
 shares shares == msg msg..sender sender !=!= feeRecipient feeRecipient
 ?? shares shares..mulDivmulDiv((MAX_BASIS_POINTSMAX_BASIS_POINTS,, MAX_BASIS_POINTS MAX_BASIS_POINTS -- fees fees..withdrawalFeewithdrawalFee,, Math Math..RoundingRounding..FF
 :: shares shares;;
}}

776776
777777
778778
779779
780780
781781

uint256uint256 feeShares feeShares == msg msg..sender sender !=!= feeRecipient feeRecipient
 ?? shares shares..mulDivmulDiv((MAX_BASIS_POINTSMAX_BASIS_POINTS,, MAX_BASIS_POINTS MAX_BASIS_POINTS -- withdrawalFee withdrawalFee,, Math Math..RoundingRounding..CeilCeil)) -- sh sh
 :: 00;;

648648
649649
650650

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:N/D:N/Y:N
https://github.com/Blueprint-Finance/sc_earn-v1/commit/509af244fdab377ea04580df004e433cbb1f532c
https://github.com/Blueprint-Finance/sc_earn-v1/commit/509af244fdab377ea04580df004e433cbb1f532c

7. 3 R E WA R D A L LO CAT I O N S U S C E P T I B L E TO S N I P I N G

// LOW

Description
The ConcreteMultiStrategyVault contract distributes rewards to users based on their share balance
at the moment the owner calls harvestRewards() . The reward calculation from the RewardsHelper
library uses the current totalSupply() of shares:

A user can monitor the blockchain for a harvestRewards() call. Just before this function is executed,
the user deposits a large amount, increasing their share of the vault. Immediately after rewards are
distributed, the user withdraws their funds. This allows the user to claim a disproportionate share of the
rewards, even though their capital did not contribute to generating them. As a result, long-term users
receive less than their fair share.

BVSS

AO:A/AC:M/AX:M/R:N/S:U/C:N/A:N/I:N/D:N/Y:M (2.2)

Recommendation
Implement a mechanism to prevent immediate withdrawals after deposits, such as a short lockup period
or withdrawal delay, to ensure users cannot game the reward distribution.

Remediation Comment

NOT APPLICABLE: It has been concluded that this issue is not applicable, as stated by the Blueprint
Finance team:

Currently, there are no rewards on the multisig strategy. For general-purpose vaults, here are the
measures to avoid sniping:
a. harvestRewards() can be called frequently to prevent reward accumulation. This works for
strategies like Aave and Compound, where rewards are distributed per second or per block.
b. For strategies with infrequent rewards, we have a reward window defined that distributes the
reward amount uniformly over a period of time, so harvestRewards only fetches a share of the
rewards and not the entire amount.

rewardIndexrewardIndex[[rewardTokenrewardToken]] +=+= amount amount..mulDivmulDiv((PRECISIONPRECISION,, totalSupply totalSupply,, Math Math..RoundingRounding..FloorFloor));;137137

https://www.halborn.com/portal/bvss?q=AO:A/AC:M/AX:M/R:N/S:U/C:N/A:N/I:N/D:N/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:M/AX:M/R:N/S:U/C:N/A:N/I:N/D:N/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:M/AX:M/R:N/S:U/C:N/A:N/I:N/D:N/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:M/AX:M/R:N/S:U/C:N/A:N/I:N/D:N/Y:M

7. 4 M I S S I N G R AT E C H A N G E VA L I DAT I O N I N AS S E T

A D J U ST M E N T A F T E R U N PAU S E

// LOW

Description
The MultiSigStrategyV1.unpauseAndAdjustTotalAssets() function allows the owner to unpause the
strategy and immediately adjust the asset accounting by any amount, without enforcing the configured
maxRateChangeThreshold . The intended protocol safeguard is implemented in
_validateRateChange() , which calculates the percentage change and reverts or pauses if the change
exceeds the threshold. However, unpauseAndAdjustTotalAssets() directly calls
_adjustTotalAssets() and skips this validation.

A call to unpauseAndAdjustTotalAssets() with a large diff value, will instantly update the asset
balance by more than the allowed percentage, bypassing the risk controls meant to prevent sudden or
suspicious accounting changes.

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N (2.0)

Recommendation
Enforce the rate change threshold in unpauseAndAdjustTotalAssets() by calling
_validateRateChange() before updating asset balances, and revert or pause if the change exceeds
the configured threshold.

Remediation Comment

RISK ACCEPTED: The Blueprint Finance team made a business decision to accept the risk of this finding
and not alter the contracts, stating that:

The operator performs regular asset updates using adjustTotalAssets() , with a maximum rate
change threshold in place for safety. If this threshold is breached or the cooldown period is
violated, the strategy is paused and flagged for admin review.
We do not enforce strict validation because significant market moves, sudden losses, or short-term
profit spikes can legitimately push rate changes beyond the threshold. In such cases, only the
admin can approve these off-rate updates after review. The conservative threshold acts as a
safeguard to keep the system safe and well-monitored.

functionfunction unpauseAndAdjustTotalAssetsunpauseAndAdjustTotalAssets((int256int256 diff diff)) externalexternal onlyOwner onlyOwner {{
 _unpause_unpause(());;
 _adjustTotalAssets_adjustTotalAssets((diffdiff,, getNextErateNoncegetNextErateNonce(())));;
}}

319319
320320
321321
322322

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N

7. 5 WI T H D R AWA L Q U E U E M AX R E D E E M D O ES N OT AC C O U N T

FO R WI T H D R AWA L F E E

// INFORMATIONAL

Description
In ConcreteMultiStrategyVault.maxRedeem() , when the withdrawal queue is active, the function
returns the user’s full share balance, without reserving shares for the withdrawal fee or considering
available on-chain liquidity. Calling redeem(maxRedeem) will burn the full share balance, but net assets
delivered will be reduced by the withdrawal fee, and delivery may be queued.

This causes a minor mismatch between the preview and what users might expect, since maxRedeem()
under queue mode ignores fees and available liquidity.

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (1.7)

Recommendation
Consider aligning maxRedeem with post-fee semantics when the queue is active, or clearly document
that maxRedeem returns the full user share balance and actual delivery is subject to fee and queue
processing.

Remediation Comment

ACKNOWLEDGED: The Blueprint Finance team made a business decision to acknowledge this finding and
not alter the contracts, since the behavior is ERC4626-compliant, stating:

As per the ERC-4626 spec: maxRedeem() defines the maximum amount of vault shares that can be
redeemed (burned) from the owner's balance in the vault through a redeem call:
a. When the queue is active: the user can redeem/burn all shares they hold in the vault without
revert.
b. When the queue is inactive: the user can redeem/burn min(userShares, availableAssets) .
The feeShares are minted to the feeRecipient and are not subtracted from the user’s share
balance, since they are newly minted.

functionfunction maxRedeemmaxRedeem((addressaddress owner owner)) publicpublic viewview virtual override virtual override returnsreturns ((uint256uint256)) {{
 ifif ((pausedpaused(()) |||| withdrawalsPaused withdrawalsPaused |||| !!_isWhitelisted_isWhitelisted((ownerowner)))) returnreturn 00;;
 uint256uint256 userShares userShares == balanceOfbalanceOf((ownerowner));;
 ifif ((addressaddress((withdrawalQueuewithdrawalQueue)) !=!= addressaddress((00)))) {{
 returnreturn userShares userShares;;
 }}
 uint256uint256 availableAssets availableAssets == getAvailableAssetsForWithdrawalgetAvailableAssetsForWithdrawal(());;
 uint256uint256 availableAssetsInShares availableAssetsInShares == _convertToShares_convertToShares((availableAssetsavailableAssets,, Math Math..RoundingRounding..FloorFloor));;
 returnreturn availableAssetsInShares availableAssetsInShares >=>= userShares userShares ?? userShares userShares :: availableAssetsInShares availableAssetsInShares;;
}}

610610
611611
612612
613613
614614
615615
616616
617617
618618
619619

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N

7. 6 C E N T R A L I Z AT I O N R I S KS

// INFORMATIONAL

Description
The ConcreteMultiStrategyVault , StrategyBase , and MultiSigStrategyV1 contracts grant the
owner , and in some cases, the operator , broad authority over core protocol operations. This includes
the ability to pause or unpause the protocol, set or update fee rates and recipients, change deposit
limits, manage whitelists and operators, add or remove strategies, adjust strategy allocations, and
configure withdrawal infrastructure.

Additionally, in MultiSigStrategyV1 , normal deposit and withdrawal operations depend on the owner or
operator periodically updating the strategy’s asset accounting via adjustTotalAssets() or
unpauseAndAdjustTotalAssets() . If the owner/operator fails to perform these updates within the
configured validity period, all deposits and withdrawals to the strategy will revert until the admin
refreshes the eRate.

As a result, a malicious or compromised owner/operator could arbitrarily disrupt user actions, change fee
structures, redirect funds, or otherwise interfere with normal vault operation, potentially harming users
and undermining protocol trust.

BVSS

AO:S/AC:L/AX:M/R:N/S:U/C:N/A:H/I:N/D:H/Y:H (1.5)

Recommendation
Document all owner and operator powers and associated risks in the protocol documentation. Consider
introducing multi-signature or timelock controls for critical owner actions to reduce single point of failure
risks.

Remediation Comment

ACKNOWLEDGED: The Blueprint Finance team made a business decision to acknowledge this finding and
not alter the contracts, stating:

To avoid or minimize centralization risks, we set the owner as a multisig safe and the operator as a
Fireblocks wallet with defined policies.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:H/I:N/D:H/Y:H
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:H/I:N/D:H/Y:H
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:H/I:N/D:H/Y:H
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:H/I:N/D:H/Y:H

7.7 M I S S I N G VA L I DAT I O N FO R R E WA R D TO K E N A N D VAU LT

F E E VA L U ES

// INFORMATIONAL

Description
The modifyRewardFeeForRewardToken() function in StrategyBase contract allows the owner to set
the fee for any reward token to an arbitrary value, including 100% (10,000 basis points) or higher.

Similarly, the setVaultFees() function in ConcreteMultiStrategyVault allows the owner to set
arbitrary fee values without bounds.

This can result in all rewards being captured as fees, or cause division by zero and revert protocol
actions, potentially bricking deposits, withdrawals, or rewards.

BVSS

AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:N (1.3)

Recommendation
Enforce an upper bound on all fee values.

Remediation Comment

ACKNOWLEDGED: The Blueprint Finance team made a business decision to acknowledge this finding and
not alter the contracts.

functionfunction modifyRewardFeeForRewardTokenmodifyRewardFeeForRewardToken((uint256uint256 newFee_ newFee_,, RewardToken RewardToken calldatacalldata rewardToken_ rewardToken_)) exterexter
 // Ensure the reward token is approved before attempting to modify its fee.// Ensure the reward token is approved before attempting to modify its fee.
 ifif ((!!rewardTokenApprovedrewardTokenApproved[[addressaddress((rewardToken_rewardToken_..tokentoken))]])) {{
 revertrevert RewardTokenNotApprovedRewardTokenNotApproved(());;
 }}

 // Find the index of the reward token to modify.// Find the index of the reward token to modify.
 uint256uint256 index index == _getIndex_getIndex((addressaddress((rewardToken_rewardToken_..tokentoken))));;

 // Update the fee for the specified reward token.// Update the fee for the specified reward token.
 rewardTokens rewardTokens[[indexindex]]..fee fee == newFee_ newFee_;;
}}

260260
261261
262262
263263
264264
265265
266266
267267
268268
269269
270270
271271

functionfunction setVaultFeessetVaultFees((VaultFees VaultFees calldatacalldata newFees_ newFees_)) externalexternal takeFees onlyOwner takeFees onlyOwner {{
 fees fees == newFees_ newFees_;; // Update the fee structure// Update the fee structure
 feesUpdatedAt feesUpdatedAt == block block..timestamptimestamp;; // Record the time of the fee update// Record the time of the fee update
}}

906906
907907
908908
909909

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:N

7. 8 N O N - STA N DA R D/ F E E- O N -T R A N S F E R TO K E N S CA N

I N F L AT E S H A R ES

// INFORMATIONAL

Description
The deposit() and mint() functions from the ConcreteMultiStrategyVault contract mint shares
based on the assets_/shares_ arguments, then transfer tokens from the user, but never verify the
actual tokens received.

If the asset is a fee-on-transfer or deflationary token, the vault mints shares for more assets than it
actually received, resulting in under collateralization and potential loss for other users.

BVSS

AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:M/D:M/Y:M (1.0)

Recommendation
Forbid fee-on-transfer tokens, or compute received = balanceAfter - balanceBefore and use the
actual received value for mint/share math, and revert if received < assets_ .

Remediation Comment

ACKNOWLEDGED: The Blueprint Finance team made a business decision to acknowledge this finding and
not alter the contracts, stating that:

The current use cases of the multisig strategy are limited to certain blue-chip or standard assets
only.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:M/D:M/Y:M
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:M/D:M/Y:M
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:M/D:M/Y:M
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:M/D:M/Y:M

7. 9 F E E BY PAS S WH E N F E E R EC I P I E N T I S T H E CA L L E R

// INFORMATIONAL

Description
Entry points apply deposit/withdrawal fees only if msg.sender != feeRecipient . This allows the
feeRecipient to bypass protocol fees by acting as the caller.

For example, if a user approves the feeRecipient to spend their shares, the feeRecipient can call
withdraw() or redeem() on their behalf and no withdrawal fee is applied. Similarly, the
feeRecipient can deposit for itself and avoid deposit fees. This allows protocol fee revenue to be
bypassed by routing actions through the feeRecipient , and can be systematically exploited if users
coordinate to avoid fees.

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N (1.0)

Recommendation
Remove the msg.sender check and always apply the fee when the configured fee is greater than zero. If
exemptions are needed, implement an explicit whitelist and check the payer or owner, not the caller.

Remediation Comment

ACKNOWLEDGED: The Blueprint Finance team made a business decision to acknowledge this finding and
not alter the contracts.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N

7.1 0 R EC E I V E R N OT VA L I DAT E D AG A I N ST WH I T E L I ST

// INFORMATIONAL

Description
The ConcreteMultiStrategyVault contract enforces whitelist checks only on the msg.sender for
deposit, mint, withdraw, and redeem operations, but not on the receiver.

As a result, a non-whitelisted user can receive shares or assets if a whitelisted user acts as a relayer, or
can have a whitelisted user withdraw/redeem on their behalf. This undermines the intended access
control.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Require the receiver to be whitelisted when whitelist is enabled.

Remediation Comment

ACKNOWLEDGED: The Blueprint Finance team made a business decision to acknowledge this finding and
not alter the contracts.

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

