/| Security Assessment 09.17.2025 - 09.29.2025

Upgradable Multisig

and Queue Changes
Blueprint Finance

=/\LL_BLIRIN

Upgradable Multisig and Queue Changes - Blueprint
Finance

Prepared by: gl HALBORN
Last Updated 10/06/2025

Date of Engagement: September 17th, 2025 - September 29th, 2025

Summary

100°% O OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALLFINDINGS CRITICAL HIGH MEDIUM LOW INFORMATIONAL
10 (1 o 1 3 6

TABLE OF CONTENTS

. Introduction
. Assessment summary
. Test approach and methodology

. Scope
. Assessment summary & findings overview

1
2
3
4. Risk methodology
5
6
7. Findings & Tech Details

7.1 Burned shares cause reward loss during pending withdrawals

7.2 Previewwithdraw underestimates required shares due to rounding mismatch
7.3 Reward allocation susceptible to sniping

7.4 Missing rate change validation in asset adjustment after unpause

7.5 Withdrawal queue maxredeem does not account for withdrawal fee

7.6 Centralization risks

7.7 Missing validation for reward token and vault fee values

7.8 Non-standard/fee-on-transfer tokens can inflate shares

7.9 Fee bypass when feerecipient is the caller

7.10 Receiver not validated against whitelist

Blueprint Finance engaged Halborn to perform a security assessment of their smart contracts from
September 17th, 2025 to September 29th, 2025. The assessment scope was limited to the smart
contracts provided to Halborn. Commit hashes and additional details are available in the Scope section of
this report.

The Blueprint Finance codebase in scope consists of smart contracts implementing a multi-strategy
ERC4626 compliant vault with modular fee logic, strategy allocation, configurable whitelist controls, and
a multi-signature custody strategy.

2. Assessment Summary

Halborn was allocated 9 days for this engagement and assigned 1 full-time security engineer to
conduct a comprehensive review of the smart contracts within scope. The engineer is an expert in
blockchain and smart contract security, with advanced skills in penetration testing and smart contract
exploitation, as well as extensive knowledge of multiple blockchain protocols.

The objectives of this assessment are to:

« ldentify potential security vulnerabilities within the smart contracts.
« \Verify that the smart contract functionality operates as intended.

In summary, Halborn identified several areas for improvement to reduce the likelihood and impact of
security risks, which were mostly acknowledged by the Blueprint Finance team. The primary
recommendations were as follows:

« Update the reward calculation to exclude shares pending withdrawal from
totalSupply() when distributing rewards, ensuring only active shares are considered.
« Align the rounding logic in previewWithdraw with the actual withdrawal calculation
by using Math.Rounding.Ceil for the fee.

« Implement a mechanism to prevent immediate withdrawals after deposits, such as a
short lockup period or withdrawal delay, to ensure users cannot game the reward
distribution.

« Enforce the rate change threshold in unpauseAndAdjustTotalAssets() by calling
_validateRateChange() before updating asset balances.

3. Test Approach And Methodology

Halborn conducted a combination of manual code review and automated security testing to balance
efficiency, timeliness, practicality, and accuracy within the scope of this assessment. While manual
testing is crucial for identifying flaws in logic, processes, and implementation, automated testing
enhances coverage of smart contracts and quickly detects deviations from established security best
practices.

The following phases and associated tools were employed throughout the term of the assessment:

« Research into the platform's architecture, purpose and use.

o Manual code review and walkthrough of smart contracts to identify any logical issues.

« Comprehensive assessment of the safety and usage of critical Solidity variables and functions
within scope that could lead to arithmetic-related vulnerabilities.

« Local testing using custom scripts (Foundry).

« Fork testing against main networks (Foundry).

« Static security analysis of scoped contracts, and imported functions (Slither).

4. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity

Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means

by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

41 EXPLOITABILITY

ATTACK ORIGIN [AO).

Captures whether the attack requires compromising a specific account.
ATTACK COST (AC).

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

ATTACK COMPLEXITY (AX]):

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory

challenges.

METRICS:

EXPLOITABILITY METRIC (ME) METRIC VALUE NUMERICAL VALUE

.. Arbitrary (AO:A) 1

Attack Origin (AO) Specific (AO:S) 0.2
Low (AC:L) 1

Attack Cost (AC) Medium (AC:M) 0.67

High (AC:H) 0.33

EXPLOITABILITY METRIC (ME) METRIC VALUE NUMERICAL VALUE

Low (AX:L) 1
Attack Complexity (AX) Medium (AX:M) 0.67
High (AX:H) 0.33

Exploitability F is calculated using the following formula:

E:I_[me

4.2 IMPACT
CONFIDENTIALITY (C):

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

INTEGRITY (I):

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVAILABILITY ([(A):

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

DEPOSIT (D):

Measures the impact to the deposits made to the contract by either users or owners.
YIELD (Y):

Measures the impact to the yield generated by the contract for either users or owners.

METRICS.:
IMPACT METRIC (M) METRIC VALUE NUMERICAL VALUE
None (C:N) 0
Low (C:L) 0.25
Confidentiality (C) Medium (C:M) 0.5
High (C:H) 0.75
Critical (C:C) 1

IMPACT METRIC (M7) METRIC VALUE NUMERICAL VALUE
None (I:N) 0
Low (I:L) 0.25
Integrity (1) Medium (I:M) 0.5
High (I:H) 0.75
Critical (I:C) 1
None (A:N) 0
Low (A:L) 0.25
Availability (A) Medium (A:M) 0.5
High (A:H) 0.75
Critical (A:C) 1
None (D:N) 0
Low (D:L) 0.25
Deposit (D) Medium (D:M) 0.5
High (D:H) 0.75
Critical (D:C) 1
None (Y:N) 0]
Low (Y:L) 0.25
Yield (Y) Medium (Y:M) 0.5
High (Y:H) 0.75
Critical (Y:C) 1

Impact I is calculated using the following formula:

> my — max(my)
4

I = max(my) +

4.3 SEVERITY COEFFICIENT
REVERSIBILITY [R):

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

SCOPE (S):

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

METRICS:
SEVERITY COEFFICIENT (C) COEFFICIENT VALUE NUMERICAL VALUE
None (R:N) 1
Reversibility () Partial (R:P) 0.5
Full (R:F) 0.2
3 (Changed (S:C) 1.25
cope (8) Unchanged (S:U) 1

Severity Coefficient C'is obtained by the following product:

The Vulnerability Severity Score S is obtained by:

The score is rounded up to 1 decimal places.

C =rs

S = min(10, EIC % 10)

SEVERITY

SCORE VALUE RANGE

45-6.9

REPOSITORY

(a) Repository: sc_earn-vi
(b) Assessed Commit ID: 51248b8

(c) Items in scope:

« src/strategies/MultiSigStrat/MultiSigStrategy.sol
« src/strategies/StrategyBase.sol
« src/vault/ConcreteMultiStrategyVault.sol

Out-of-Scope: Third party dependencies and economic attacks.

REMEDIATION COMMIT ID:

- 509af24

Out-of-Scope: New features/implementations after the remediation commit IDs.

6. ASSESSMENT SUMMARY & FINDINGS OVERVIEW

CRITICAL HIGH MEDIUM LOW
o o 1 3
INFORMATIONAL
6
SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

BURNED SHARES CAUSE REWARD LOSS DURING
PENDING WITHDRAWALS

NOT APPLICABLE -
10/01/2025

https://github.com/Blueprint-Finance/sc_earn-v1
https://github.com/Blueprint-Finance/sc_earn-v1/commit/509af244fdab377ea04580df004e433cbb1f532c

SECURITY ANALYSIS

PREVIEWWITHDRAW UNDERESTIMATES REQUIRED
SHARES DUE TO ROUNDING MISMATCH

REWARD ALLOCATION SUSCEPTIBLE TO SNIPING

MISSING RATE CHANGE VALIDATION IN ASSET
ADJUSTMENT AFTER UNPAUSE

WITHDRAWAL QUEUE MAXREDEEM DOES NOT
ACCOUNT FOR WITHDRAWAL FEE

CENTRALIZATION RISKS

MISSING VALIDATION FOR REWARD TOKEN AND VAULT
FEE VALUES

NON-STANDARD/FEE-ON-TRANSFER TOKENS CAN
INFLATE SHARES

FEE BYPASS WHEN FEERECIPIENT IS THE CALLER

RECEIVER NOT VALIDATED AGAINST WHITELIST

RISK LEVEL REMEDIATION DATE

SOLVED - 10/01/2025

NOT APPLICABLE -
10/01/2025

RISK ACCEPTED -
10/01/2025

ACKNOWLEDGED -

INFORMATIONAL
10/01/2025

ACKNOWLEDGED -

INFORMATIONAL
10/01/2025

ACKNOWLEDGED -

INFORMATIONAL
10/01/2025

ACKNOWLEDGED -

INFORMATIONAL
10/01/2025

ACKNOWLEDGED -

INFORMATIONAL
10/01/2025

ACKNOWLEDGED -
10/01/2025

INFORMATIONAL

7. FINDINGS 8 TECH DETAILS

7.1 BURNED SHARES CAUSE REWARD LOSS DURING
PENDING WITHDRAWALS

/] MEDIUM

Description

In the ConcreteMultiStrategyVault when isQueueMandatory is enabled, withdrawals are processed
through a queue. When a user requests a withdrawal, their shares are burned immediately in the
_redeem() function:

666 | function _redeem(uint256 sharesToRedeem, address receiver_, address owner_, uint256 feeShares, u
667 private

668 | {

069 if (withdrawalsPaused) revert WithdrawalsPaused();

670 if (msg.sender != owner_) {

671 _spendAllowance(owner_, msg.sender, sharesToRedeem);

672 }

673 _burnCowner_, sharesToRedeem);

674 if (feeShares > 0) _mint(feeRecipient, feeShares);

675 uint256 availableAssetsForWithdrawal = getAvailableAssetsForWithdrawal();
676 WithdrawalQueueHelper.processWithdrawal(

677 assets,

678 sharesToRedeem - feeShares,

679 receiver_,

680 availableAssetsForWithdrawal,

681 asset(),

682 address(withdrawalQueue),

683 minQueueRequest,

684 strategies,

685 parkinglLot,

686 isQueueMandatory

687 :

688 emit Withdraw(msg.sender, receiver_, owner_, assets, sharesToRedeem);
689 | }

However, the vault’s totalSupply() function still includes these pending withdrawal shares until the
owner/operator processes the queue with batchClaimwWithdrawal() :

731 | function totalSupply() public view override(ERC20Upgradeable, IERC20Q) returns (uint256 total) {
732 total = VaultActionsHelper.getTotalSupply(super.totalSupply(), withdrawalQueue);
33| 1}

If harvestRewards() is called while there are pending withdrawals, the reward calculation uses a
totalSupply_ that includes shares which have already been burned and are no longer eligible for
rewards.

1134 | function harvestRewards(bytes calldata encodedData) external nonReentrant onlyOwner {

1135 RewardsHelper.harvestRewards(strategies, encodedData, totalSupply(), rewardIndex, rewardAddres
1136 emit RewardsHarvested();

1137 | 3

This causes a portion of the rewards to become unclaimable in the protocol. Remaining users also receive
less than their fair share.

BVSS
AQ:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:M (5.0)

Recommendation

Update the reward calculation to exclude shares pending withdrawal from totalSupply() when
distributing rewards, ensuring only active shares are considered.

Remediation Comment

NOT APPLICABLE: It has been concluded that this issue is not applicable, as stated by the Blueprint
Finance team:

We use the queue only for multisig strategies, and usually the on-chain strategies
(Aave/Compound) are used for atomic vault purposes. Second, we are not using on-chain rewards;
instead, we focus on off-chain rewards calculation based on user shares. So far, all our vaults rely
on off-chain rewards. Also, v2 vaults are coming, and while the rewards logic is part of the initial
architecture, it is currently not in use. Since it is not a pressing issue, we would like to skip it. We do
not have rewards on the multisig strategy; therefore, this issue is not applicable.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:M

7.2 PREVIEWWITHDRAW UNDERESTIMATES REQUIRED
SHARES DUE TO ROUNDING MISMATCH

/] LOW

Description

The previewWithdraw() functionin ConcreteMultiStrategyVault is intended to let users estimate
how many shares they need to burn to withdraw a given amount of assets. However, it uses
Math.Rounding.Floor when calculating the withdrawal fee:

776 | function previewWithdraw(uint256 assets_) public view override returns (uint256 shares) {

o’ shares = _convertToShares(assets_, Math.Rounding.Ceil);

778 shares = msg.sender != feeRecipient

779 ? shares.mulDiv(MAX_BASIS_POINTS, MAX_BASIS_POINTS - fees.withdrawalFee, Math.Rounding.F
780 . shares;

781 | 3

In contrast, the actual withdrawal logic in withdraw() uses Math.Rounding.Ceil for the same

calculation:

648 | uint256 feeShares = msg.sender != feeRecipient

649 ? shares.mulDiv(MAX_BASIS_POINTS, MAX_BASIS_POINTS - withdrawalFee, Math.Rounding.Ceil) - sh
650 1 0;

As aresult, previewWithdraw() can underestimate the number of shares required, causing user
transactions to revert if they rely on the previewed value.

BVSS
AQ:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:N/D:N/Y:N (2.5)

Recommendation

Align the rounding logic in previewWithdraw with the actual withdrawal calculation by using
Math.Rounding.Ceil for the fee. This ensures previews accurately reflect the required shares for
withdrawal.

Remediation Comment

SOLVED: The Blueprint Finance team solved this finding in the specified commit by following the
mentioned recommendation.

Remediation Hash

https://github.com/Blueprint-Finance/sc_earn-vi/commit/509af244fdab377ea04580df004e433cbb1f53
2c

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:N/D:N/Y:N
https://github.com/Blueprint-Finance/sc_earn-v1/commit/509af244fdab377ea04580df004e433cbb1f532c
https://github.com/Blueprint-Finance/sc_earn-v1/commit/509af244fdab377ea04580df004e433cbb1f532c

7.3 REWARD ALLOCATION SUSCEPTIBLE TO SNIPING
/| LOW

Description

The ConcreteMultiStrategyVault contract distributes rewards to users based on their share balance
at the moment the owner calls harvestRewards() . The reward calculation from the RewardsHelper
library uses the current totalSupply() of shares:

137 | rewardIndex[rewardToken] += amount.mulDiv(PRECISION, totalSupply, Math.Rounding.Floor);

A user can monitor the blockchain for a harvestRewards() call. Just before this function is executed,
the user deposits a large amount, increasing their share of the vault. Immediately after rewards are
distributed, the user withdraws their funds. This allows the user to claim a disproportionate share of the
rewards, even though their capital did not contribute to generating them. As a result, long-term users
receive less than their fair share.

BVSS
AQ:A/AC:M/AX:M/R:N/S:U/C:N/A:N/I:N/D:N/Y:M (2.2)

Recommendation

Implement a mechanism to prevent immediate withdrawals after deposits, such as a short lockup period
or withdrawal delay, to ensure users cannot game the reward distribution.

Remediation Comment

NOT APPLICABLE: It has been concluded that this issue is not applicable, as stated by the Blueprint
Finance team:

Currently, there are no rewards on the multisig strategy. For general-purpose vaults, here are the
measures to avoid sniping:

a. harvestRewards() can be called frequently to prevent reward accumulation. This works for
strategies like Aave and Compound, where rewards are distributed per second or per block.

b. For strategies with infrequent rewards, we have a reward window defined that distributes the
reward amount uniformly over a period of time, so harvestRewards only fetches a share of the
rewards and not the entire amount.

https://www.halborn.com/portal/bvss?q=AO:A/AC:M/AX:M/R:N/S:U/C:N/A:N/I:N/D:N/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:M/AX:M/R:N/S:U/C:N/A:N/I:N/D:N/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:M/AX:M/R:N/S:U/C:N/A:N/I:N/D:N/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:M/AX:M/R:N/S:U/C:N/A:N/I:N/D:N/Y:M

7.4 MISSING RATE CHANGE VALIDATIONIN ASSET
ADJUSTMENT AFTER UNPAUSE

/] LOW

Description

The MultiSigStrategyV1.unpauseAndAdjustTotalAssets() function allows the owner to unpause the
strategy and immediately adjust the asset accounting by any amount, without enforcing the configured
maxRateChangeThreshold . The intended protocol safeguard is implemented in

_validateRateChange() , which calculates the percentage change and reverts or pauses if the change
exceeds the threshold. However, unpauseAndAdjustTotalAssets() directly calls
_adjustTotalAssets() and skips this validation.

319 | function unpauseAndAdjustTotalAssets(int256 diff) external onlyOwner {

320 _unpause();
321 _adjustTotalAssets(diff, getNextErateNonce());
322 | 3

A call to unpauseAndAdjustTotalAssets() with alarge diff value, will instantly update the asset
balance by more than the allowed percentage, bypassing the risk controls meant to prevent sudden or
suspicious accounting changes.

BVSS
AQ:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N (2.0)

Recommendation

Enforce the rate change threshold in unpauseAndAdjustTotalAssets() by calling
_validateRateChange() before updating asset balances, and revert or pause if the change exceeds
the configured threshold.

Remediation Comment

RISK ACCEPTED: The Blueprint Finance team made a business decision to accept the risk of this finding
and not alter the contracts, stating that:

The operator performs regular asset updates using adjustTotalAssets(), with a maximum rate
change threshold in place for safety. If this threshold is breached or the cooldown period is
violated, the strateqgy is paused and flagged for admin review.

We do not enforce strict validation because significant market moves, sudden losses, or short-term
profit spikes can legitimately push rate changes beyond the threshold. In such cases, only the
admin can approve these off-rate updates after review. The conservative threshold acts as a
safequard to keep the system safe and well-monitored.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N

7.5 WITHDRAWAL QUEUE MAXREDEEM DOES NOT ACCOUNT
FOR WITHDRAWAL FEE

// INFORMATIONAL

Description

In ConcreteMultiStrategyVault.maxRedeem() , when the withdrawal queue is active, the function
returns the user’s full share balance, without reserving shares for the withdrawal fee or considering
available on-chain liquidity. Calling redeem(maxRedeem) will burn the full share balance, but net assets
delivered will be reduced by the withdrawal fee, and delivery may be queued.

610 | function maxRedeem(address owner) public view virtual override returns (uint256) {

611 if (paused() || withdrawalsPaused || !_isWhitelisted(owner)) return 0;

612 uint256 userShares = balanceOf(owner);

613 if (Caddress(withdrawalQueue) != address(2)) {

614 return userShares;

615 1

616 uint256 availableAssets = getAvailableAssetsForWithdrawal();

617 uint256 availableAssetsInShares = _convertToShares(availableAssets, Math.Rounding.Floor);
glg return availableAssetsInShares >= userShares ? userShares : availableAssetsInShares;

19 | 3

This causes a minor mismatch between the preview and what users might expect, since maxRedeem()
under queue mode ignores fees and available liquidity.

BVSS
AQ:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (1.7)

Recommendation

Consider aligning maxRedeem with post-fee semantics when the queue is active, or clearly document
that maxRedeem returns the full user share balance and actual delivery is subject to fee and queue
processing.

Remediation Comment

ACKNOWLEDGED: The Blueprint Finance team made a business decision to acknowledge this finding and
not alter the contracts, since the behavior is ERC4626-compliant, stating:

As per the ERC-4626 spec: maxRedeem() defines the maximum amount of vault shares that can be
redeemed (burned) from the owner's balance in the vault through a redeem call:

a. When the queue is active: the user can redeem/burn all shares they hold in the vault without
revert.

b. When the queue is inactive: the user can redeem/burn min(userShares, availableAssets).
The feeShares are minted to the feeRecipient and are not subtracted from the user’s share
balance, since they are newly minted.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N

7.6 CENTRALIZATION RISKS
// INFORMATIONAL

Description

The ConcreteMultiStrategyVault, StrategyBase, and MultiSigStrategyV1l contracts grant the
owner , and in some cases, the operator, broad authority over core protocol operations. This includes
the ability to pause or unpause the protocol, set or update fee rates and recipients, change deposit
limits, manage whitelists and operators, add or remove strategies, adjust strategy allocations, and
configure withdrawal infrastructure.

Additionally, in MultiSigStrategyV1, normal deposit and withdrawal operations depend on the owner or
operator periodically updating the strategy’s asset accounting via adjustTotalAssets() or
unpauseAndAdjustTotalAssets() . If the owner/operator fails to perform these updates within the
configured validity period, all deposits and withdrawals to the strategy will revert until the admin
refreshes the eRate.

As a result, a malicious or compromised owner/operator could arbitrarily disrupt user actions, change fee
structures, redirect funds, or otherwise interfere with normal vault operation, potentially harming users
and undermining protocol trust.

BVSS
AQ:S/AC:L/AX:M/R:N/S:U/C:N/A:H/I:N/D:H/Y:H (1.5)

Recommendation

Document all owner and operator powers and associated risks in the protocol documentation. Consider
introducing multi-signature or timelock controls for critical owner actions to reduce single point of failure
risks.

Remediation Comment

ACKNOWLEDGED: The Blueprint Finance team made a business decision to acknowledge this finding and
not alter the contracts, stating:

To avoid or minimize centralization risks, we set the owner as a multisig safe and the operator as a
Fireblocks wallet with defined policies.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:H/I:N/D:H/Y:H
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:H/I:N/D:H/Y:H
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:H/I:N/D:H/Y:H
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:H/I:N/D:H/Y:H

7.7 MISSING VALIDATION FOR REWARD TOKEN AND VAULT
FEE VALUES

// INFORMATIONAL

Description

The modifyRewardFeeForRewardToken() functionin StrategyBase contract allows the owner to set
the fee for any reward token to an arbitrary value, including 100% (10,000 basis points) or higher.

200 | function modifyRewardFeeForRewardToken(uint256 newFee_, RewardToken calldata rewardToken_) exter
201 // Ensure the reward token is approved before attempting to modify its fee.
262 if (!rewardTokenApproved[address(rewardToken_.token)]) {

263 revert RewardTokenNotApproved();

264 1

265

206 // Find the index of the reward token to modify.

267 uint256 index = _getIndex(address(rewardToken_.token));

268

269 // Update the fee for the specified reward token.

270 rewardTokens[index].fee = newFee_;

271 | 3}

Similarly, the setVaultFees() functionin ConcreteMultiStrategyVault allows the owner to set
arbitrary fee values without bounds.

906 | function setVaultFees(VaultFees calldata newFees_) external takeFees onlyOwner {

907 fees = newFees_; // Update the fee structure
908 feesUpdatedAt = block.timestamp; // Record the time of the fee update
99 | }

This can result in all rewards being captured as fees, or cause division by zero and revert protocol
actions, potentially bricking deposits, withdrawals, or rewards.

BVSS
AQ:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:N (1.3)

Recommendation

Enforce an upper bound on all fee values.

Remediation Comment

ACKNOWLEDGED: The Blueprint Finance team made a business decision to acknowledge this finding and
not alter the contracts.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:N

7.8 NON-STANDARD/FEE-ON-TRANSFER TOKENS CAN
INFLATE SHARES

// INFORMATIONAL

Description

The deposit() and mint() functions from the ConcreteMultiStrategyVault contract mint shares
based on the assets_/shares_ arguments, then transfer tokens from the user, but never verify the
actual tokens received.

If the asset is a fee-on-transfer or deflationary token, the vault mints shares for more assets than it
actually received, resulting in under collateralization and potential loss for other users.

BVSS
AO:S/AC:L /AX:M/R:N/S:U/C:N/A:N/I:M/D:M/Y:M (1.0)

Recommendation

Forbid fee-on-transfer tokens, or compute received = balanceAfter - balanceBefore and use the
actual received value for mint/share math, and revert if received < assets_ .

Remediation Comment

ACKNOWLEDGED: The Blueprint Finance team made a business decision to acknowledge this finding and
not alter the contracts, stating that:

The current use cases of the multisig strategy are limited to certain blue-chip or standard assets
only.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:M/D:M/Y:M
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:M/D:M/Y:M
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:M/D:M/Y:M
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:M/D:M/Y:M

7.9 FEE BYPASS WHEN FEERECIPIENT IS THE CALLER
// INFORMATIONAL

Description

Entry points apply deposit/withdrawal fees only if msg.sender != feeRecipient . This allows the
feeRecipient to bypass protocol fees by acting as the caller.

For example, if a user approves the feeRecipient to spend their shares, the feeRecipient can call
withdraw() or redeem() on their behalf and no withdrawal fee is applied. Similarly, the
feeRecipient can deposit for itself and avoid deposit fees. This allows protocol fee revenue to be
bypassed by routing actions through the feeRecipient, and can be systematically exploited if users
coordinate to avoid fees.

BVSS
AQ:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N (1.0)

Recommendation

Remove the msg.sender check and always apply the fee when the configured fee is greater than zero. If
exemptions are needed, implement an explicit whitelist and check the payer or owner, not the caller.

Remediation Comment

ACKNOWLEDGED: The Blueprint Finance team made a business decision to acknowledge this finding and
not alter the contracts.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:N

7.10 RECEIVER NOT VALIDATED AGAINST WHITELIST
// INFORMATIONAL

Description

The ConcreteMultiStrategyVault contract enforces whitelist checks only on the msg.sender for
deposit, mint, withdraw, and redeem operations, but not on the receiver.

As a result, a non-whitelisted user can receive shares or assets if a whitelisted user acts as a relayer, or
can have a whitelisted user withdraw/redeem on their behalf. This undermines the intended access
control.

BVSS
AOQ:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation

Require the receiver to be whitelisted when whitelist is enabled.

Remediation Comment

ACKNOWLEDGED: The Blueprint Finance team made a business decision to acknowledge this finding and
not alter the contracts.

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

