/| Security Assessment 09.03.2025 - 09.16.2025

Earn V2 Core -

Standard

Implementation
Blueprint Finance

=/\LL_BLIRIN

Earn V2 Core - Standard Implementation - Blueprint
Finance

Prepared by: gl HALBORN
Last Updated 10/10/2025

Date of Engagement: September 3rd, 2025 - September 16th, 2025

Summary

100°% O OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALLFINDINGS CRITICAL HIGH MEDIUM LOW INFORMATIONAL
12 (1 o o 3 9

TABLE OF CONTENTS

1. Introduction

2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope

6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Strategy can be removed while still holding allocated funds

7.2 Lack of non-zero output checks in deposit and redeem can result in user asset loss
7.3 Unlimited approval risks in allocatemodule

7.4 Unused high-water mark in performance fee calculation

7.5 Strategy allocation accounting can be manipulated by strategy contracts

7.6 Mismatch in performance fee preview vs accrual and liquidity preview vs execution
7.7 Hooks can affect share/asset conversion by altering vault balance

7.8 Deallocation order can contain stale, missing, or duplicate strategies

7.9 Comment/code mismatch

7.10 Setdeallocationorder will revert if more than 255 strategies are passed

7.11 Floating pragma

7.12 Unused imports

8. Automated Testing

Blueprint Finance engaged Halborn to perform a security assessment of their smart contracts from
September 3rd, 2025 to September 16th, 2025. The assessment scope was limited to the smart
contracts provided to Halborn. Commit hashes and additional details are available in the Scope section of
this report.

The Blueprint Finance codebase in scope consists of smart contracts implementing a modular,
upgradeable ERC4626 vault system with strateqgy allocation, hooks, role-based access control, and
factory-managed proxy deployment.

2. Assessment Summary

Halborn was allocated 10 days for this engagement and assigned 1 full-time security engineer to
conduct a comprehensive review of the smart contracts within scope. The engineer is an expert in
blockchain and smart contract security, with advanced skills in penetration testing and smart contract
exploitation, as well as extensive knowledge of multiple blockchain protocols.

The objectives of this assessment are to:

« ldentify potential security vulnerabilities within the smart contracts.
« Verify that the smart contract functionality operates as intended.

In summary, Halborn identified several areas for improvement to reduce the likelihood and impact of
security risks. These were partially addressed by the Blueprint Finance team. The primary
recommendations were:

e Integrate the performanceFeeHighWaterMark variable into the performance fee logic.
« Require that allocated == 0 before allowing a strategy to be removed, regardless
of its status. Remove the exception for Halted status.

« Update allocation logic to compare the vault's asset balance before and after the
call, and use the actual delta for allocated updates.

« Require that a strategy is not present in deallocationOrder before allowing its
removal, regardless of its status. Alternatively, automatically remove the strategy
from deallocationOrder as part of the removal process to ensure consistency.

3. Test Approach And Methodology

Halborn conducted a combination of manual code review and automated security testing to balance
efficiency, timeliness, practicality, and accuracy within the scope of this assessment. While manual
testing is crucial for identifying flaws in logic, processes, and implementation, automated testing
enhances coverage of smart contracts and quickly detects deviations from established security best
practices.

The following phases and associated tools were employed throughout the term of the assessment:

« Research into the platform's architecture, purpose and use.

o Manual code review and walkthrough of smart contracts to identify any logical issues.

« Comprehensive assessment of the safety and usage of critical Solidity variables and functions
within scope that could lead to arithmetic-related vulnerabilities.

« Local testing using custom scripts (Foundry).

« Fork testing against main networks (Foundry).

« Static security analysis of scoped contracts, and imported functions (Slither).

4. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity

Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means

by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

41 EXPLOITABILITY

ATTACK ORIGIN [AO).

Captures whether the attack requires compromising a specific account.
ATTACK COST (AC).

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

ATTACK COMPLEXITY (AX]):

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory

challenges.

METRICS:

EXPLOITABILITY METRIC (ME) METRIC VALUE NUMERICAL VALUE

.. Arbitrary (AO:A) 1

Attack Origin (AO) Specific (AO:S) 0.2
Low (AC:L) 1

Attack Cost (AC) Medium (AC:M) 0.67

High (AC:H) 0.33

EXPLOITABILITY METRIC (ME) METRIC VALUE NUMERICAL VALUE

Low (AX:L) 1
Attack Complexity (AX) Medium (AX:M) 0.67
High (AX:H) 0.33

Exploitability F is calculated using the following formula:

E:I_[me

4.2 IMPACT
CONFIDENTIALITY (C):

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

INTEGRITY (I):

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVAILABILITY ([(A):

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

DEPOSIT (D):

Measures the impact to the deposits made to the contract by either users or owners.
YIELD (Y):

Measures the impact to the yield generated by the contract for either users or owners.

METRICS.:
IMPACT METRIC (M) METRIC VALUE NUMERICAL VALUE
None (C:N) 0
Low (C:L) 0.25
Confidentiality (C) Medium (C:M) 0.5
High (C:H) 0.75
Critical (C:C) 1

IMPACT METRIC (M7) METRIC VALUE NUMERICAL VALUE
None (I:N) 0
Low (I:L) 0.25
Integrity (1) Medium (I:M) 0.5
High (I:H) 0.75
Critical (I:C) 1
None (A:N) 0
Low (A:L) 0.25
Availability (A) Medium (A:M) 0.5
High (A:H) 0.75
Critical (A:C) 1
None (D:N) 0
Low (D:L) 0.25
Deposit (D) Medium (D:M) 0.5
High (D:H) 0.75
Critical (D:C) 1
None (Y:N) 0]
Low (Y:L) 0.25
Yield (Y) Medium (Y:M) 0.5
High (Y:H) 0.75
Critical (Y:C) 1

Impact I is calculated using the following formula:

> my — max(my)
4

I = max(my) +

4.3 SEVERITY COEFFICIENT
REVERSIBILITY [R):

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

SCOPE (S):

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

METRICS:
SEVERITY COEFFICIENT (C) COEFFICIENT VALUE NUMERICAL VALUE
None (R:N) 1
Reversibility () Partial (R:P) 0.5
Full (R:F) 0.2
3 (Changed (S:C) 1.25
cope (8) Unchanged (S:U) 1

Severity Coefficient C'is obtained by the following product:

The Vulnerability Severity Score S is obtained by:

The score is rounded up to 1 decimal places.

C =rs

S = min(10, EIC % 10)

SEVERITY

SCORE VALUE RANGE

45-6.9

REPOSITORY

(a) Repository: earn-v2-core
(b) Assessed Commit ID: bib7cec

(c) Items in scope:

« src/common/UpgradeableVault.sol

« src/factory/ConcreteFactory.sol

« src/factory/VaultProxy.sol

« src/implementation/ConcreteStandardVaultimpl.sol

« src/lib/storage/ConcreteCachedVaultStateStoragelLib.sol
« src/lib/storage/ConcreteFactoryBaseStoragelib.sol

« src/lib/storage/ConcreteStandardVaultimplStoragelLib.sol
« src/lib/Constants.sol

« src/lib/Conversion.sol

« src/lib/Hooks.sol

« src/lib/Roles.sol

« src/lib/StateSetterLib.sol

« src/lib/Time.sol

« src/module/AllocateModule.sol

Out-of-Scope: Third party dependencies and economic attacks.

REMEDIATION COMMIT ID:

« 464163

Out-of-Scope: New features/implementations after the remediation commit IDs.

6. ASSESSMENT SUMMARY & FINDINGS OVERVIEW

CRITICAL HIGH MEDIUM LOW
o o o 3
INFORMATIONAL

https://github.com/Blueprint-Finance/earn-v2-core
https://github.com/Blueprint-Finance/earn-v2-core/commit/b1b7cece9b50a554c1c21bfd6ba1b18b5b9169cb
https://github.com/Blueprint-Finance/earn-v2-core/commit/4f64163e85945785dc6133e6cb0b172dd814f4d0

SECURITY ANALYSIS RISK LEVEL

STRATEGY CAN BE REMOVED WHILE STILL HOLDING
ALLOCATED FUNDS

LACK OF NON-ZERO OUTPUT CHECKS IN DEPGSIT AND
REDEEM CAN RESULT IN USER ASSET LOSS

UNLIMITED APPROVAL RISKS IN ALLOCATEMODULE

UNUSED HIGH-WATER MARK IN PERFORMANCE FEE

INFORMATIONAL
CALCULATION

STRATEGY ALLOCATION ACCOUNTING CAN BE

INFORMATIONAL
MANIPULATED BY STRATEGY CONTRACTS

MISMATCH IN PERFORMANCE FEE PREVIEW VS

INFORMATIONAL
ACCRUAL AND LIQUIDITY PREVIEW VS EXECUTION

HOOKS CAN AFFECT SHARE/ASSET CONVERSION BY

INFORMATIONAL
ALTERING VAULT BALANCE

DEALLOCATION ORDER CAN CONTAIN STALE, MISSING,

INFORMATIONAL
OR DUPLICATE STRATEGIES

COMMENT/CODE MISMATCH INFORMATIONAL

SETDEALLOCATIONORDER WILL REVERT IF MORE THAN

INFORMATIONAL
255 STRATEGIES ARE PASSED

REMEDIATION DATE

RISK ACCEPTED -
10/03/2025

SOLVED - 10/03/2025

RISK ACCEPTED -
10/03/2025

ACKNOWLEDGED -
09/26/2025

ACKNOWLEDGED -
10/03/2025

ACKNOWLEDGED -
10/03/2025

ACKNOWLEDGED -
10/03/2025

ACKNOWLEDGED -
10/03/2025

SOLVED - 10/03/2025

SOLVED - 10/03/2025

SECURITY ANALYSIS

RISK LEVEL

FLOATING PRAGMA

REMEDIATION DATE

INFORMATIONAL

UNUSED IMPORTS

INFORMATIONAL

ACKNOWLEDGED -
10/03/2025

SOLVED - 10/03/2025

7. FINDINGS 8 TECH DETAILS

7.1 STRATEGY CAN BE REMOVED WHILE STILL HOLDING
ALLOCATED FUNDS

/] LOW

Description

The removeStrategy(address strategy) functionin StateSetterLib isintended to allow the
removal of a strategy from the vault only when it is safe to do so. However, if a strategy's status is set to
Halted, the function allows its removal even if the strategy still has non-zero allocated funds. This is
due to the following logic:

93 | function removeStrategy(address strategy) external {

A SVLib.ConcreteStandardVaultImplStorage storage $ = SVLib.fetch();

95

) IConcreteStandardVaultImpl.StrategyData memory strategyDataCached = $.strategyData[strategy]
97

98 require(

9 (strategyDataCached.allocated == 0 && _strategyNotInDeallocationOrder(strategy))

100 || strategyDataCached.status == IConcreteStandardVaultImpl.StrategyStatus.Halted,
101 IConcreteStandardVaultImpl.StrategyHasAllocation()

102 :

103 require($.strategies.remove(strategy), IConcreteStandardVaultImpl.StrategyDoesNotExist());
104

105 delete $.strategyData[strategy];

106

107 emit IConcreteStandardVaultImpl.StrategyRemoved(strategy);

108 | %

If the strateqy is Halted, the check passes regardless of the allocated value. As a result, the
strategy can be removed and its data deleted while it still holds assets, breaking accounting and
potentially resulting in loss of funds or inability to recover them.

BVSS
AQ:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:C (2.5)

Recommendation

Require that allocated == @ before allowing a strategy to be removed, regardless of its status.
Remove the exception for Halted status.

Remediation Comment

RISK ACCEPTED: The Blueprint Finance team made a business decision to accept the risk of this finding
and not alter the contracts.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:C
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:C
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:C
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:C

7.2 LACK OF NON-ZERO OUTPUT CHECKS IN DEPOSIT AND
REDEEM CAN RESULT IN USER ASSET LOSS

/] LOW

Description

The deposit() and redeem() functionsin ConcreteStandardVaultImpl do not enforce that the
calculated shares (for deposit) or assets (for redeem) are greater than zero before proceeding. This
means that, under certain edge-case conditions, such as when totalSupply is very low and
cachedTotalAssets is very high (which can be caused by a strategy over reporting yield), a user may
deposit assets and receive zero shares, or redeem shares and receive zero assets.

In both cases, the user loses value with no compensation.

BVSS
AQ:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:N (2.5)

Recommendation

Add validations to assert that the shares and assets are greater than @ in deposit() and
redeem() to prevent user loss in these scenarios.

Remediation Comment

SOLVED: The Blueprint Finance team solved this finding in the specified commit by following the
mentioned recommendation.

Remediation Hash

https://github.com/Blueprint-Finance/earn-v2-core/commit/4f64163e85945785dc6133e6¢cb0b172dd81
4f4d0

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:N
https://github.com/Blueprint-Finance/earn-v2-core/commit/4f64163e85945785dc6133e6cb0b172dd814f4d0
https://github.com/Blueprint-Finance/earn-v2-core/commit/4f64163e85945785dc6133e6cb0b172dd814f4d0

7.3 UNLIMITED APPROVAL RISKS IN ALLOCATEMODULE
/| LOW

Description

The AllocateModule contract uses forceApprove(strategy, type(uint256).max) before each
allocation. While this is reset to zero after the call, a malicious or compromised strategy could, in theory,
exploit the approval window to transfer more assets than intended.

BVSS
AQ:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:N (2.0)

Recommendation

Consider using minimal approvals or validating strategy contracts more strictly. Alternatively, document
the trust assumptions for strategy contracts.

Remediation Comment

RISK ACCEPTED: The Blueprint Finance team made a business decision to accept the risk of this finding
and not alter the contracts.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:N

7.4 UNUSED HIGH-WATER MARK IN PERFORMANCE FEE
CALCULATION

// INFORMATIONAL

Description

The performanceFeeHighWaterMark variable in ConcreteStandardVaultImplStorageLib is defined
but never read from or updated in the ConcreteStandardVaultImpl implementation. As a result,
performance fees are charged on any net positive yield within a single accrual period, including gains
that merely recover previous losses.

This means the vault can charge performance fees multiple times on the same economic gain if the vault
value fluctuates, rather than only on new profits above the previous high.

BVSS
AQ:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:N/Y:L (1.7)

Recommendation

Document the fee-on-recovery behavior clearly in user-facing documentation and disclosures, so users
understand that performance fees may apply to recovered losses as well as new gains.

Alternatively, if the high-water mark will not be used, consider removing the unused variable to avoid
confusion.

Remediation Comment

ACKNOWLEDGED: The Blueprint Finance team made a business decision to acknowledge this finding and
not alter the contracts, stating:

We consciously opted for this design after carefully considering the options and the industry
practices and do not consider it a threat but a design choice. Qur design charges directly on the
yield (also minted, but net effect is share value appreciation) instead of inflating the shares (net
effect is share value depreciation). Thus charging the fees wont drop the share value. We are in line
with major defi protocols, who handle the situation similarly.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:N/Y:L
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:N/Y:L
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:N/Y:L
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:N/Y:L

7.5 STRATEGY ALLOCATION ACCOUNTING CAN BE
MANIPULATED BY STRATEGY CONTRACTS

// INFORMATIONAL

Description

The AllocateModule contract, used via delegatecall in ConcreteStandardVaultImpl.allocate,
updates the vault's internal .allocated value for each strategy based solely on the return value of
IStrategyTemplate(strategy).allocateFunds() and deallocateFunds() . However, there is no
check that the actual asset balance change matches the reported value. A malicious or buggy strategy
could over report allocation or under report deallocation, leading to incorrect accounting, fee
miscalculation, and potential user loss.

Additionally, when a strateqgy is toggled to Halted, the vault stops updating its .allocated value for
that strateqy. If the real value of the strateqy decreases (e.g., due to a hack or loss) after being halted,
the vault continues to use the old, higher value in its accounting. This allows users to withdraw or
redeem at an inflated share price, extracting more than their fair share and pushing hidden losses onto
remaining holders.

BVSS
AQ:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:N (1.3)

Recommendation

Update allocation logic to compare the vault's asset balance before and after the call, and use the actual
delta for allocated updates.

Consider excluding halted strategies from total assets until reconciled.

Remediation Comment

ACKNOWLEDGED: The Blueprint Finance team made a business decision to acknowledge this finding and
not alter the contracts.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:N

7.6 MISMATCH IN PERFORMANCE FEE PREVIEW VS
ACCRUAL AND LIQUIDITY PREVIEW VS EXECUTION

// INFORMATIONAL

Description

The ConcreteStandardVaultImpl contract exhibits inconsistencies between preview and execution
logic in two areas:

« Performance fee preview:

The _previewAccrueYieldAndFees() function subtracts the management fee amount from total
assets before calculating the performance fee, while the actual accrual path
(accruePerformanceFee()) uses the full total assets value. This results in the previewed
performance fee being slightly lower than the fee actually minted, potentially confusing users and
integrators.

« Liquidity preview:

The maxWithdraw and maxRedeem functions preview available liquidity by considering all active
strategies, but actual withdrawals only use strategies listed in deallocationOrder . If
deallocationOrder omits any active, liquid strategies, the previewed maximum withdrawable
amount may be higher than what can actually be withdrawn, leading to failed transactions and user
confusion.

BVSS
AQ:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:L/D:N/Y:N (0.6)

Recommendation

Standardize the asset base used for performance fee calculations in both preview and accrual paths, and
align the liquidity preview logic with the actual withdrawal execution logic to ensure consistency.

Remediation Comment

ACKNOWLEDGED: The Blueprint Finance team made a business decision to acknowledge this finding and
not alter the contracts.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:L/D:N/Y:N

7.7 HOOKS CAN AFFECT SHARE/ASSET CONVERSION BY
ALTERING VAULT BALANCE

// INFORMATIONAL

Description

The ConcreteStandardVaultImpl contract supports pre-action hooks (such as preDeposit, preMint,
preWithdraw, and preRedeem) via the HooksLibV1 library. These hooks are invoked before the vault
calculates the number of shares or assets for a user action, but after the vault's asset balance is
cached.

If a hook implementation transfers assets into or out of the vault during its execution, the cached asset

value used for conversion will be stale. This could result in value extraction or dilution, as the effective
price at which shares are minted or redeemed will be manipulated.

BVSS

AQ:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:L (0.6)

Recommendation

Recompute or recheck the vault's asset balance after executing pre-action hooks.

Remediation Comment

ACKNOWLEDGED: The Blueprint Finance team made a business decision to acknowledge this finding and
not alter the contracts.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:L
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:L
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:L
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:L

7.8 DEALLOCATION ORDER CAN CONTAIN STALE, MISSING,
OR DUPLICATE STRATEGIES

// INFORMATIONAL

Description

The deallocationOrder arrayin ConcreteStandardVaultImpl determines the order in which
strategies are used to fulfill withdrawals. However, the protocol does not enforce that this array contains
all and only the active strategies, nor does it prevent duplicates. Notably, when a strategy is removed, it
is not automatically purged from deallocationOrder, leaving stale entries.

As a result, deallocationOrder can contain stale (removed) strategies, omit active ones, or include
duplicates. This can cause withdrawals to fail even when sufficient funds exist, or waste gas on
unnecessary or invalid withdrawal attempts.

BVSS
AQ:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (0.5)

Recommendation

Ensure that deallocationOrder always contains each active strategy exactly once, with no duplicates
or stale entries.

Alternatively, automatically update deallocationOrder when strategies are added or removed, or
validate its integrity before processing withdrawals.

Remediation Comment

ACKNOWLEDGED: The Blueprint Finance team made a business decision to acknowledge this finding and
not alter the contracts.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N

7.9 COMMENT/CODE MISMATCH
// INFORMATIONAL

Description

The _withdraw() functionin ConcreteStandardVaultImpl.sol currently transfers assets to the
receiver before burning the user's shares, while the accompanying comment states that the transfer
should occur after burning shares for safer ERC777 handling.

715 | // Conclusion: we need to do the transfer after the burn so that any reentrancy would happen aft

716 | // shares are burned and after the assets are transferred, which is a valid state.
717

718 | SafeERC20.safeTransfer(IERC20Casset()), receiver, assets);
719 | CachedVaultStatelLib.fetch().cachedTotalAssets -= assets;
720 | _burnCowner, shares);

Although the function is protected by the nonReentrant modifier, which currently prevents reentrancy
attacks, this mismatch between the comment and implementation could lead to confusion or introduce
vulnerabilities if the function is refactored or the guard is removed in the future.

Additionally, in ConcreteFactory, the NatSpec documentation for the create and
predictVaultAddress functions claims that if salt == 0, a deterministic salt will be computed from
the deployer, version, and owner. In reality, the implementation simply forwards zero as the salt, and no
computation occurs. This discrepancy may confuse users expecting automatic salt derivation.

BVSS
AQ:A/AC:L/AX:M/R:F/S:U/C:N/A:N/I:L/D:N/Y:N (0.4)

Recommendation

Update comments and documentation to match the actual implementation, or update the code to match
the documented behavior.

Remediation Comment

SOLVED: The Blueprint Finance team solved this finding in the specified commit by following the
mentioned recommendation.

Remediation Hash

https://github.com/Blueprint-Finance/earn-v2-core/commit/4f64163e85945785dc6133e6¢cb0b172dd81
4f4d0

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://github.com/Blueprint-Finance/earn-v2-core/commit/4f64163e85945785dc6133e6cb0b172dd814f4d0
https://github.com/Blueprint-Finance/earn-v2-core/commit/4f64163e85945785dc6133e6cb0b172dd814f4d0

7.10 SETDEALLOCATIONORDER WILL REVERT IF MORE THAN
255 STRATEGIES ARE PASSED

// INFORMATIONAL

Description

The setDeallocationOrder(address[] calldata order) functionin StateSetterLib.sol uses a
uint8 loop index.

147 | function setDeallocationOrder(address[] calldata order) external {

148 SVLib.ConcreteStandardVaultImplStorage storage $ = SVLib.fetch();

149

150 delete $.deallocationOrder;

151

152 uint256 orderLength = order.length;

153 for (uint8 i = 0; i < orderLength; i++) {

154 address strategy = order[i];

155 require($.strategies.contains(strategy), IConcreteStandardVaultImpl.StrategyDoesNotExist
156 require(

157 $.strategyData[strategy].status == IConcreteStandardVaultImpl.StrategyStatus.Active,
158 IConcreteStandardVaultImpl.StrategyIsHalted()

159);

160

161 $.deallocationOrder.push(strategy);

162 1

163

164 emit IConcreteStandardVaultImpl.DeallocationOrderUpdated();

165 | 3

If more than 255 strategies are passed, the function will revert due to overflow.

BVSS
AQ:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation

Change the loop index from uint8 to uint256 to match the array length type. Alternatively, limit the
amount of strategies that can be added to be less than 256.

Remediation Comment

SOLVED: The Blueprint Finance team solved this finding in the specified commit by following the
mentioned recommendation.

Remediation Hash

https://github.com/Blueprint-Finance/earn-v2-core/commit/4f64163e85945785dc6133e6¢cb0b172dd81
4f4d0

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://github.com/Blueprint-Finance/earn-v2-core/commit/4f64163e85945785dc6133e6cb0b172dd814f4d0
https://github.com/Blueprint-Finance/earn-v2-core/commit/4f64163e85945785dc6133e6cb0b172dd814f4d0

7.11 FLOATING PRAGMA
// INFORMATIONAL

Description

The contracts in scope currently use floating pragma version ~0.8.0 which means that the code can be
compiled by any compiler version that is greater than these version, and less than 0.9.0.

However, it is recommended that contracts should be deployed with the same compiler version and flags
used during development and testing. Locking the pragma helps to ensure that contracts do not
accidentally get deployed using another pragma. For example, an outdated pragma version might
introduce bugs that affect the contract system negatively.

Additionally, from Solidity versions 0.8.20 through 0.8.24 , the default target EVM version is set to
Shanghai, which results in the generation of bytecode that includes PUSH@ opcodes. Starting with
version 0.8.25, the default EVM version shifts to Cancun, introducing new opcodes for transient
storage, TSTORE and TLOAD.

In this aspect, it is crucial to select the appropriate EVM version when it's intended to deploy the
contracts on networks other than the Ethereum mainnet, which may not support these opcodes. Failure
to do so could lead to unsuccessful contract deployments or transaction execution issues.

BVSS
AQ:A/AC:L/AX:L/R:P/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation

Lock the pragma version to the same version used during development and testing (for example: pragma
solidity 0.8.28;), and make sure to specify the target EVM version when using Solidity versions from
0.8.20 and above if deploying to chains that may not support newly introduced opcodes.

Additionally, it is crucial to stay informed about the opcode support of different chains to ensure smooth
deployment and compatibility.

Remediation Comment

ACKNOWLEDGED: The Blueprint Finance team made a business decision to acknowledge this finding and
not alter the contracts.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:N/I:N/D:N/Y:N

7.12 UNUSED IMPORTS
// INFORMATIONAL

Description

Throughout the code, there are several instances of unused components that could be removed to

improve code readability and maintainability.

Instances of this issue include:

« In ConcreteStandardVaultImpl:

import {IConcreteFactory} from "../interface/IConcreteFactory.sol";

e In StateSetterLib:

import {IStrategyTemplate} from "../interface/IStrategyTemplate.sol”;

BVSS
AO:A/AC:L /AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation

Remove the unused imports from the files.

Remediation Comment

SOLVED: The Blueprint Finance team solved this finding in the specified commit by following the

mentioned recommendation.

Remediation Hash

https://github.com/Blueprint-Finance/earn-v2-core/commit/4f64163e85945785dc6133e6¢cb0b172dd81

414d0

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://github.com/Blueprint-Finance/earn-v2-core/commit/4f64163e85945785dc6133e6cb0b172dd814f4d0
https://github.com/Blueprint-Finance/earn-v2-core/commit/4f64163e85945785dc6133e6cb0b172dd814f4d0

8. AUTOMATED TESTING

Halborn used automated testing techniques to increase coverage of specific areas within the smart
contracts under review. Among the tools used was Slither, a Solidity static analysis framework. After
Halborn successfully verified the smart contracts in the repository and was able to compile them
correctly into their ABI and binary formats, Slither was executed against the contracts. This tool
performs static verification of mathematical relationships between Solidity variables to identify invalid or
inconsistent usage of the contracts' APIs throughout the entire codebase.

The security team reviewed all findings reported by the Slither software; however, findings related to
external dependencies have been excluded from the results below to maintain report clarity.

Most findings identified by Slither were proved to be false positives and therefore were not added to
the issue list in this report.

INFO:Detectors:

ConcreteStandardVaultImpl. previewStrategyYield(address).loss (src/implementation/ConcreteStandardVaultImpl.sol#856) is a local variable never initialized
ConcreteStandardVaultImpl. previewStrategyYield(address).yield (src/implementation/ConcreteStandardVaultImpl.sol#855) is a local variable never initialized
ConcreteStandardVaultImpl._accrueYield().totalPositiveYield (src/implementation/ConcreteStandardVaultImpl.sol#596) is a local variable never initialized
ConcreteStandardVaultImpl._accrueYield().totalNegativeYield (src/implementation/ConcreteStandardVaultImpl.sol#597) is a local variable never initialized

Reference: https://github.com/crytic/slither/wiki/! initialized-local-variables

INFO:Detectors:

ConcreteStandardVaultImpl.allocate(bytes) (src/implementation/ConcreteStandardVaultImpl.sol#68-78) ignores return value by allocateModule().functionDelegateCall(de:) (src/imp! ion/Concre dVaultImpl.sol#69)
Reference: https://github.com/crytic/slither/wiki/l i return

INFO:Detectors:

UpgradeableVault._initialize(uinté4,address,bytes).owner (src/common/UpgradeableVault.sol#78) shadows:

- OwnableUpgradeable.owner() (node_modules/@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol#73-76) (function)
ConcreteStandardVaultImpl.constructor(address).factory (src/implementation/ConcreteStandardVaultImpl.sol#57) shadows:

- UpgradeableVault.factory (src/common/UpgradeableVault.sol#15) (state variable)

- IUpgradeableVault.factory() (src/interface/IUpgradeableVault.sol#14) (function)
ConcreteStandardVaultImpl.withdraw(uint256,address,address).owner (src/implementation/ConcreteStandardVaultImpl.sol#239) shadows:

- OwnableUpgradeable.owner() (node_modules/@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol#73-76) (function)
ConcreteStandardVaultImpl.redeem(uint256,address,address).owner (src/implementation/ConcreteStandardVaultImpl.sol#282) shadows:

- OwnableUpgradeable.owner() (node_modules/@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol#73-76) (function)
ConcreteStandardVaultImpl.previewDeposit(uint256).totalSupply (src/implementation/ConcreteStandardVaultImpl.sol#388) shadows:

- ERC28Upgradeable. totalSupply() (node_modules/@openzeppelin/contracts-upgradeable/token/ERC20/ERC2BUpgradeable.sol#185-188) (function)

- IERC28.totalSupply() (node_modules/@openzeppelin/contracts/token/ERC28/IERC20.s01#27) (function)
ConcreteStandardVaultImpl.previewMint(uint256).totalSupply (src/implementation/ConcreteStandardVaultImpl.sol#396) shadows:

- ERC28Upgradeable.totalSupply() (node_modules/@openzeppelin/contracts-upgradeable/token/ERC28/ERC28Upgradeable.sol#185-1088) (function)

- IERC28.totalSupply() (node_modules/@openzeppelin/contracts/token/ERC28/IERC28.s01#27) (function)
ConcreteStandardVaultImpl.previewWithdraw(uint256).totalSupply (src/implementation/ConcreteStandardVaultImpl.sol#411) shadows:

- ERC28Upgradeable.totalSupply() (node_modules/@openzeppelin/contracts-upgradeable/token/ERC28/ERC28Upgradeable.sol#185-1088) (function)

- IERC28.totalSupply() (node_modules/@openzeppelin/contracts/token/ERC28/IERC20.s01#27) (function)
ConcreteStandardVaultImpl.previewRedeem(uint256).totalSupply (src/implementation/ConcreteStandardVaultImpl.sol#426) shadows:

- ERC28Upgradeable.totalSupply() (node_modules/@openzeppelin/contracts-upgradeable/token/ERC28/ERC28Upgradeable.sol#185-1088) (function)

- IERC28.totalSupply() (node_modules/@openzeppelin/contracts/token/ERC28/IERC20.s01#27) (function)
Concr dVaultImpl address).owner (src/implementation/ConcreteStandardVaultImpl.sol#449) shadows

- OwnableUpgradeable.owner() (node_modules/@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol#73-76) (function)
ConcreteStandardVaultImpl.maxWithdraw(address).owner (src/implementation/ConcreteStandardVaultImpl.sol#458) shadows:

- OwnableUpgradeable.owner() (node_modules/@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol#73-76) (function)
ConcreteStandardVaultImpl._initialize(uinté4,address,bytes).asset (src/implementation/ConcreteStandardVaultImpl.sol#533) shadows:

- ERC4626Upgradeable.asset() (node_modules/@openzeppelin/contracts-upgradeable/token/ERC28/extensions/ERC4626Upgradeable.soli#132-135) (function)

- IERC4626.asset() (node_modules/@openzeppelin/contracts/interfaces/IERC4626.501#38) (function)
ConcreteStandardVaultImpl._initialize(uinté4,address,bytes).name (src/implementation/ConcreteStandardVaultImpl.sol#535) shadows:

- ERC28Upgradeable.name() (node_modules/@openzeppelin/contracts-upgradeable/token/ERC28/ERC28Upgradeable.sol#71-74) (function)

- IERC2BMetadata.name() (node_modules/@openzeppelin/contracts/token/ERC208/extensions/IERC28Metadata.sol#15) (function)
ConcreteStandardVaultImpl._initialize(uinté4,address,bytes).symbol (src/implementation/ConcreteStandardVaultImpl.sol#536) shadows:

- ERC28Upgradeable.symbol() (node_modules/@openzeppelin/contracts-upgradeable/token/ERC28/ERC28Upgradeable.sol##88-83) (function)

- IERC2BMetadata.symbol() (node_modules/@openzeppelin/contracts/token/ERC28/extensions/IERC28Metadata.sol#28) (function)
ConcreteStandardVaultImpl._executeWithdraw(address,address,address,uint256,uint256).owner (src/implementation/ConcreteStandardVaultImpl.sol#656) shadows:

- OwnableUpgradeable.owner() (node_modules/@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol#73-76) (function)
ConcreteStandardVaultImpl. withdraw(address,address,address,uint256,uint256).owner (src/implementation/ConcreteStandardVaultImpl.sol#782) shadows:

- OwnableUpgradeable.owner() (node_modules/@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol#73-76) (function)
ConcreteStandardVaultImpl.previewPerformanceFee(uint256,uint256,uint256,uint256). totalSupply (src/implementation/ConcreteStandardVaultImpl.sol#915) shadows:

- ERC28Upgradeable.totalSupply() (node_modules/@openzeppelin/contracts-upgradeable/token/ERC28/ERC28Upgradeable.sol#185-1088) (function)

- IERC28.totalSupply() (node_modules/@openzeppelin/contracts/token/ERC28/IERC20.s01#27) (function)
ConcreteStandardVaultImpl. maxWithdraw(address).owner (src/implementation/ConcreteStandardVaultImpl.sol#946) shadows:

- OwnableUpgradeable.owner() (node_modules/@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol#73-76) (function)
IConcr tImpl ee(uint16) ee (src/interface/IConcreteStandardVaultImpl.sol#339) shadows:
- IConcr -dVaultImpl ee() (src/interface/IConcreteStandardVaultInpl.sol#449-452) (function)
IConcreteStandardVaultImpl.updatePerformanceFee(uint16).performanceFee (src/interface/IConcreteStandardVaultImpl.sol#356) shadows:
- IConcreteStandardVaultImpl.performanceFee() (src/interface/IConcreteStandardVaultImpl.sol#489) (function)
Reference: https://github.com/crytic/slither/wiki/Detector: ion#local-variabl ing
INFO:Detectors:
ConcreteFactory._upgrade(address,uinté4,bytes) (src/factory/ConcreteFactory.sol#241-256) has external calls inside a loop: require(bool,error)(msg.sender = OwnableUpgradeable(vault).owner(),revert NotOwner()()) (src/factory/ConcreteFactory.sol#243)
ConcreteFactory._upgrade(address,uinté4,bytes) (src/factory/ConcreteFactory.sol#241-256) has external calls inside a loop: currentVaultVersion = IUpgradeableVault(vault).version() (src/factory/ConcreteFactory.sol#245)
ConcreteFactory._upgrade(address,uinté4,bytes) (src/factory/ConcreteFactory.sol#241-256) has external calls inside a loop: IVaultProxy(vault).upgradeToAndCall(getImplementationByVersion(newVersion),abi.encodeCall(IUpgradeableVault.upgrade,(newVersion,d
ata))) (src/factory/ConcreteFactory.sol#251-253)
AllocateModule.allocateFunds(bytes) (src/module/AllocateModule.sol#17-45) has external calls inside a loop: IERC2B(IERC4626(address(this)).asset()).forceApprove(parans[i].strategy,type()(uint256).max) (src/module/AllocateModule.sol#31)
AllocateModule.allocateFunds(bytes) (src/module/AllocateModule.sol#17-45) has external calls inside a loi amount = IStrategyTemplate(params[i].strategy).allocateFunds(params[i].extraData) (src/module/AllocateModule.sol#33)
AllocateModule.allocateFunds(bytes) (src/module/AllocateModule.sol#17-45) has external calls inside a loi TERC28(IERC4626(address(this)).asset()).forceApprove(params[i].strategy,8) (src/module/AllocateModule.sol#35)
AllocateModule.allocateFunds(bytes) (src/module/AllocateModule.sol#17-45) has external calls inside a loop: amount = IStrategyTemplate(params[i].strategy).deallocateFunds(params[i].extraData) (src/module/AllocateModule.sol#39)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation/#calls-inside-a-loop
INFO:Detectors:
Reentrancy in ConcreteFactory._upgrade(address,uinté4,bytes) (src/factory/ConcreteFactory.sol#241-256):
External calls:
- IVaultProxy(vault).upgradeToAndCall(getImplementationByVersion(newVersion),abi.encodeCall(IUpgradeableVault.upgrade,(newVersion,data))) (src/factory/ConcreteFactory.sol#251-253)
Event emitted after the call(s):
- Migrated(vault,newVersion) (src/factory/ConcreteFactory.soli#255)
Reentrancy in AllocateModule.allocateFunds(bytes) (src/module/AllocateModule.soli#17-45):
External calls:
- amount = IStrategyTemplate(params[i].strategy).allocateFunds(params[i].extraData) (src/module/AllocateModule.sol#33)
- amount = IStrategyTemplate(params[i].strategy).deallocateFunds(params[i].extraData) (src/module/AllocateModule.sol#39)
Event emitted after the call(s):
- AllocatedFunds(params[i].strategy,params[i].isDeposit,amount,params[i].extraData) (src/module/AllocateModule.sol#43)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#ireentrancy-vulnerabilities-3
INFO:Detectors:
UpgradeableVault._initialize(uinté4,address,bytes) (src/common/UpgradeableVault.sol#70) is never used and should be removed
UpgradeableVault._upgrade(uinté4,uinté4,bytes) (src/common/UpgradeableVault.sol#78) is never used and should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentationttdead-code
INFO:Detectors:
ConcreteFactory._computeBytecode(uinté4,address,bytes) (src/factory/ConcreteFactory.sol#126-141) uses literals with too many digits:
- abi.encodePacked(type()(VaultProxy).creationCode,abi.encode(implementation,constructorData)) (src/factory/ConcreteFactory.sol#148)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#ttoo-many-digits
INFO:Slither:. analyzed (59 contracts with 188 detectors), 36 result(s) found

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

