
// Security Assessment 07.29.2024 - 08.01.2024

Blueprint: Spokes
Contracts
Blueprint Finance

B l u e p r i n t : S p o ke s C o n t ra c t s - B l u e p r i n t F i n a n c e

Prepared by: HALBORN

Last Updated Unknown date

Date of Engagement: July 29th, 2024 - August 1st, 2024

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS

3

CRITICAL

0

HIGH

0

MEDIUM

0

LOW

1

INFORMATIONAL

2

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology

3.1 Out-of-scope

4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Single step ownership transfer process
7.2 Lack of events for state changes
7.3 Ownership assumptions

8. Automated Testing

0%

1 . I n t r o d u c t i o n

Concrete engaged Halborn to conduct a security assessment on their smart contract beginning on July
29th, 2024 and ending on August 01th, 2024. A security assessment on smart contracts was performed
on the scoped smart contracts provided to the Halborn team.

2. A s s e s s m e n t S u m m a r y

The team at Halborn was provided one week for the engagement and assigned a full-time security
engineer to verify the security of the smart contract. The security engineer is a blockchain and smart-
contract security expert with advanced penetration testing, smart-contract hacking, and deep
knowledge of multiple blockchain protocols.

The purpose of this assessment is to:

Ensure that smart contract functions operate as intended.
Identify potential security issues with the smart contracts.

In summary, Halborn identified some security risks that should be addressed by the Concrete team .

3. Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of manual and automated security testing to balance efficiency,
timeliness, practicality, and accuracy in regard to the scope of this assessment. While manual testing is
recommended to uncover flaws in logic, process, and implementation; automated testing techniques help
enhance coverage of the code and can quickly identify items that do not follow the security best
practices. The following phases and associated tools were used during the assessment:

Research into architecture and purpose.
Smart contract manual code review and walkthrough.
Graphing out functionality and contract logic/connectivity/functions (solgraph).
Manual assessment of use and safety for the critical Solidity variables and functions in scope to

identify any arithmetic related vulnerability classes.
Manual testing by custom scripts.
Testnet deployment (Foundry).

3.1 O u t -O f -S c o p e

External libraries and financial-related attacks.

4. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity
Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means
by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

4.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory
challenges.

M E T R I C S :

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

M ​E

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (C:N)
Low (C:L)

Medium (C:M)
High (C:H)

Critical (C:C)

0
0.25
0.5

0.75
1

M ​E

E

E = m ​∏ e

M ​I

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

C

r

s

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

C

C = rs

S

S = min(10,EIC ∗ 10)

5. S C O P E

REPOSITORY

(a) Repository: sc_hub-v1

(b) Assessed Commit ID: 94b955a

(c) Items in scope:

src/storage/*
src/utils/*
src/accessControl/*
src/constants/*
src/errors/*
src/blueprints/BlueprintResolver.sol

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

0

HIGH

0

MEDIUM

0

LOW

1

INFORMATIONAL

2

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

SINGLE STEP OWNERSHIP TRANSFER PROCESS LOW -

LACK OF EVENTS FOR STATE CHANGES INFORMATIONAL -

https://github.com/Blueprint-Finance/sc_hub-v1

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

OWNERSHIP ASSUMPTIONS INFORMATIONAL -

7. F I N D I N G S & T EC H D E TA I L S

7.1 S I N G L E ST E P OWN E RS H I P T R A N S F E R P RO C ES S

// LOW

Description
It was identified that the ConcreteStorage contract inherited from OpenZeppelin's Ownable library.
Ownership of the contracts that are inherited from the Ownable module can be lost, as the ownership is
transferred in a single-step process. The address that the ownership is changed to should be verified to
be active or willing to act as the owner . Ownable2Step is safer than Ownable for smart contracts
because the owner cannot accidentally transfer smart contract ownership to a mistyped address. Rather
than directly transferring to the new owner, the transfer only completes when the new owner accepts
ownership.

function transferOwnership(address newOwner) public virtual onlyOwner {
 require(newOwner != address(0), "Ownable: new owner is the zero address");
 _transferOwnership(newOwner);
}

function _transferOwnership(address newOwner) internal virtual {
 address oldOwner = _owner;
 _owner = newOwner;
 emit OwnershipTransferred(oldOwner, newOwner);
}

Proof of Concept
The following Foundry test was used in order to prove the aforementioned issue:

BVSS

AO:A/AC:L/AX:L/C:N/I:N/A:M/D:N/Y:N/R:P/S:U (2.5)

Recommendation
Consider using the Ownable2Step https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/access/Ownable2Step.sol library over the Ownable library.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:M/D:N/Y:N/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:M/D:N/Y:N/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:M/D:N/Y:N/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:M/D:N/Y:N/R:P/S:U
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol

7. 2 L AC K O F EV E N TS FO R STAT E C H A N G ES

// INFORMATIONAL

Description
Important state-changing functions such as setAddress , setUint , setString , etc., do not emit
events. This can make it challenging to track changes and debug issues.

BVSS

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation
Consider emitting events in all state-changing functions.

event AddressSet(bytes32 indexed key, address value);
event UintSet(bytes32 indexed key, uint256 value);
event StringSet(bytes32 indexed key, string value);
// Emit these events in respective functions

7. 3 OWN E RS H I P AS S U M P T I O N S

// INFORMATIONAL

Description
The contract uses Ownable , and assumes that the multisig_ provided in the constructor will always
be secure and correctly managed. If this address is compromised, the whole storage system can be at
risk.

BVSS

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation
Consider the multisig address is always managed securely. Implement additional checks if necessary.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U

8 . AU TO M AT E D T EST I N G

Halborn used automated testing techniques to enhance the coverage of certain areas of the scoped
contracts. Among the tools used was Slither, a Solidity static analysis framework. After Halborn verified
all the contracts in the repository and was able to compile them correctly into their ABI and binary
formats, Slither was run on the all-scoped contracts. This tool can statically verify mathematical
relationships between Solidity variables to detect invalid or inconsistent usage of the contracts' APIs
across the entire code-base. The slither issues are considered false positives and well-known by the
client added on the source code using slither-disable-next-line comment.

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

