
// Security Assessment 02.12.2025 - 02.13.2025

Rewards Distribution

Concrete

Rewa r d s D i st r i b u t i o n - C o n c r e t e

Prepared by: HALBORN

Last Updated 03/17/2025

Date of Engagement by: February 12th, 2025 - February 13th, 2025

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS

2

CRITICAL

0

HIGH

0

MEDIUM

0

LOW

2

INFORMATIONAL

0

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Two-step ownership transfer
7.2 Centralization risk

8. Automated Testing

1 0 0%

1 . I n t r o d u c t i o n

Concrete engaged Halborn to conduct a security assessment on smart contracts beginning on
February 12th, 2025 and ending on February 13th, 2025. The security assessment was scoped to
the smart contracts provided to the Halborn team. Commit hashes and further details can be
found in the Scope section of this report.

2. A s s e s s m e n t S u m m a r y

The team at Halborn dedicated 2 days for the engagement and assigned one full-time security
engineer to evaluate the security of the smart contract.

The security engineer is a blockchain and smart-contract security expert with advanced
penetration testing, smart-contract hacking, and deep knowledge of multiple blockchain protocols

The purpose of this assessment is to:

Ensure that smart contract functions operate as intended.
Identify potential security issues with the smart contracts.

In summary, Halborn identified some improvements to reduce the likelihood and impact of risks,
which were partially addressed by the Concrete team:

Implement two step ownership transfer.
Reduce the centralization risk in the pullShares function.

3. Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of manual, semi-automated and automated security testing to
balance efficiency, timeliness, practicality, and accuracy regarding the scope of this assessment.
While manual testing is recommended to uncover flaws in logic, process, and implementation;
automated testing techniques help enhance coverage of the code and can quickly identify items
that do not follow security best practices. The following phases and associated tools were used
throughout the term of the assessment:

Research into architecture and purpose.
Smart contract manual code review and walk-through.
Manual assessment of use and safety for the critical Solidity variables and functions in

scope to identify any vulnerability classes
Manual testing by custom scripts.
Static Analysis of security for scoped contract, and imported functions. (Slither)
Local deployment and testing (Foundry)

4. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a
Severity Coefficient. This system is inspired by the industry standard Common Vulnerability
Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical
means by which vulnerabilities can be exploited and Impact describes the consequences of a
successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two
factors: Reversibility and Scope. These capture the impact of the vulnerability on the environment
as well as the number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to
the highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level
of risk to address the most critical issues in a timely manner.

4.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a
single transaction on the relevant blockchain. Includes but is not limited to financial and
computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and
regulatory challenges.

M E T R I C S :

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

M ​E

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract
due to a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized
users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

M ​E

E

E = m ​∏ e

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

C

r

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

C

s

C

C = rs

S

S = min(10,EIC ∗ 10)

5. S C O P E

F ILES AND REPOSITORY

(a) Repository: vault-rewards-distribution-contracts

(b) Assessed Commit ID: 9d7e4eb

(c) Items in scope:

src/RewardsDistributorFactory.sol
src/VaultRewardsDistributor.sol
src/lib/RewardsDistributionErrors.sol
src/lib/RewardsDistributionEvents.sol

Out-of-Scope: Third party dependencies and economic attacks.

REMEDIAT ION COMMIT ID :

decbdb0

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

0

HIGH

0

MEDIUM

0

LOW

2

INFORMATIONAL

0

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

TWO-STEP OWNERSHIP TRANSFER LOW SOLVED - 03/13/2025

https://github.com/Blueprint-Finance/vault-rewards-distribution-contracts

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

CENTRALIZATION RISK LOW
ACKNOWLEDGED -

03/15/2025

7. F I N D I N G S & T EC H D E TA I L S

7.1 T WO - ST E P OWN E RS H I P T R A N S F E R

// LOW

Description
The RewardDistributorFactory and VaultRewardsDistributor inherits from Ownable
(Upgradeable) but doesn't implement a two-step ownership transfer pattern. This could be
dangerous if the owner accidentally transfers ownership to an incorrect address, resulting in
permanent loss of control

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:L (2.1)

Recommendation
It is recommended to use OpenZeppelin's Ownable2Step (Upgradeable) instead

Remediation Comment

SOLVED: The suggested mitigation was implemented.

Remediation Hash
decbdb0797486d6ed5cc4e0537d0288644f0620f

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:L
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:L
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:L
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:L

7. 2 C E N T R A L I Z AT I O N R I S K

// LOW

Description
The rescueFunds function in the VaultRewardsDistributor contract allows the owner to
withdraw any amount of any token at any time, including the reward token during the active
distribution period. This creates a centralization risk where:

The owner has unilateral control over all funds in the contract
There's no timelock or delay mechanism
The reward token can be withdrawn even during active distribution period
There's no distinction between reward tokens and other accidentally sent tokens

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:L (2.1)

Recommendation
It is recommended to:

Add expiry date check for reward token rescue
Use a multi-signature wallet instead of an EOA
Consider implementing a timelock for rescue operations

Remediation Comment

ACKNOWLEDGED: The Concrete team acknowledged the finding with the following comment: "we
have decided not to apply the change as it works this way by design. The admin is supposed to
be a multisig and the tokens distribution via merkle trees means that everything is already
centralized anyway. We see no benefit in limiting the capabilities of the rescue function."

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:L
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:L
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:L
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:L

8 . AU TO M AT E D T EST I N G

Halborn used automated testing techniques to enhance the coverage of certain areas of the
smart contracts in scope. Among the tools used was Slither, a Solidity static analysis framework.
After Halborn verified the smart contracts in the repository and was able to compile them
correctly into their ABIs and binary format, Slither was run against the contracts. This tool can
statically verify mathematical relationships between Solidity variables to detect invalid or
inconsistent usage of the contracts' APIs across the entire code-base.
The security team conducted a comprehensive review of findings generated by the Slither static
analysis tool. No major issues were found for contracts in-scope, as most of them were false
positives.

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or
immediately following any material changes to the codebase, whichever comes first. This approach is crucial for
maintaining the project’s integrity and addressing potential vulnerabilities introduced by code modifications.

