
// Smart Contract Security Assessment 01.07.2025 - 01.07.2025

Withdrawal Pause

Concrete

W i t h d rawa l Pa u s e - C o n c r e t e

Prepared by: HALBORN

Last Updated 03/11/2025

Date of Engagement by: January 7th, 2025 - January 7th, 2025

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS

4

CRITICAL

0

HIGH

0

MEDIUM

0

LOW

1

INFORMATIONAL

3

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Incorrect event values
7.2 Potential upgradeability concerns due to new global state variable
7.3 Error and event missing natspec documentation
7.4 Togglewithdrawalspaused function could be declared as external

8. Automated Testing

1 0 0%

1 . I n t r o d u c t i o n

Concrete engaged Halborn to conduct a security assessment of the new pausing mechanism for
the ConcreteMultiStrategyVault on January 7th 2025. The security assessment was scoped to
the specific commit of the sc_earn-v1 GitHub repository provided to the Halborn team. Commit hash
and further details can be found in the Scope section of this report.

Key changes introduced in the commit in scope:

1. New State Variable:

withdrawalsPaused: Boolean to track whether withdrawals are paused.

2. New Functionality:

toggleWithdrawalsPaused(bool withdrawalsPaused_): Allows the owner to
pause/unpause withdrawals.

_withdraw function modified to check the withdrawalsPaused state and revert if
withdrawals are paused.

3. Tests:

Tests added to validate that:

Only the admin can toggle the withdrawalsPaused state.
Withdrawals are blocked when paused and permitted when unpaused.

2. A s s e s s m e n t S u m m a r y

Halborn was provided 1 day for the engagement and assigned one full-time security engineer to
review the security of the smart contract in scope. The engineer is a blockchain and smart contract
security expert with advanced penetration testing and smart contract hacking skills, and deep
knowledge of multiple blockchain protocols.

The purpose of the assessment is to:

Identify potential security issues within the new pausing mechanism for the
ConcreteMultiStrategyVault contract.

Ensure that smart contract functionality operates as intended.

In summary, Halborn identified some improvements to reduce the likelihood and impact of risks, which
were addressed by the Concrete team. The main one was:

Update the event emission by withdrawalsPaused() to ensure it uses the right
values.

3. Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of manual and automated security testing to balance efficiency,
timeliness, practicality, and accuracy in regard to the scope of this assessment. While manual testing
is recommended to uncover flaws in logic, process, and implementation; automated testing
techniques help enhance coverage of the code and can quickly identify items that do not follow the
security best practices. The following phases and associated tools were used during the assessment:

Research into architecture and purpose.
Smart contract manual code review and walkthrough.
Graphing out functionality and contract logic/connectivity/functions (solgraph).
Manual assessment of use and safety for the critical Solidity variables and functions in scope to

identify any arithmetic related vulnerability classes.
Manual testing by custom scripts.
Static Analysis of security for scoped contract, and imported functions (slither).
Testnet deployment (Foundry).

4. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a
Severity Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring
System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical
means by which vulnerabilities can be exploited and Impact describes the consequences of a
successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as
the number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of
risk to address the most critical issues in a timely manner.

4.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational
cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and
regulatory challenges.

M E T R I C S :

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due
to a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users
only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

M ​E

E

E = m ​∏ e

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

C

r

s

C

C = rs

S

S = min(10,EIC ∗ 10)

SEVERITY SCORE VALUE RANGE

Informational 0 - 1.9

5. S C O P E

F ILES AND REPOSITORY

(a) Repository: sc_earn-v1

(b) Assessed Commit ID: 94eecfe

(c) Items in scope:

src/interfaces/Errors.sol
src/interfaces/IConcreteMultiStrategyVault.sol
src/vault/ConcreteMultiStrategyVault.sol

Out-of-Scope: Third party dependencies and economic attacks.

REMEDIAT ION COMMIT ID :

04cc962
160244a

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

0

HIGH

0

MEDIUM

0

LOW

1

INFORMATIONAL

3

https://github.com/Blueprint-Finance/sc_earn-v1
https://github.com/Blueprint-Finance/sc_earn-v1/commit/04cc962de489932fe53766ee145fbcd39210ed40
https://github.com/Blueprint-Finance/sc_earn-v1/commit/160244a23e3761629af2e0f86fbd447fa96b2877

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

INCORRECT EVENT VALUES LOW
SOLVED -

03/07/2025

POTENTIAL UPGRADEABILITY CONCERNS DUE TO NEW
GLOBAL STATE VARIABLE

INFORMATIONAL
SOLVED -

03/07/2025

ERROR AND EVENT MISSING NATSPEC
DOCUMENTATION

INFORMATIONAL
SOLVED -

03/07/2025

TOGGLEWITHDRAWALSPAUSED FUNCTION COULD BE
DECLARED AS EXTERNAL

INFORMATIONAL
SOLVED -

03/07/2025

7. F I N D I N G S & T EC H D E TA I L S

7.1 I N C O R R EC T EV E N T VA L U ES

// LOW

Description
The toggleWithdrawalsPaused() function emits the WithdrawalPausedToggled event, intended to
log the state transition of the withdrawalsPaused variable. However, the emitted event incorrectly
uses the same value, withdrawalsPaused, for both the old and new states. This results in inaccurate
event logs, which can hinder effective monitoring, debugging, and external integration logic reliant on
events.

/**/**
 * @notice Toggles the withdrawals paused state * @notice Toggles the withdrawals paused state
 * @dev Can only be called by the owner. Emits a `WithdrawalPausedToggled * @dev Can only be called by the owner. Emits a `WithdrawalPausedToggled
 * @param withdrawalsPaused_ The new state of the withdrawals paused stat * @param withdrawalsPaused_ The new state of the withdrawals paused stat
 */ */
functionfunction toggleWithdrawalsPausedtoggleWithdrawalsPaused((boolbool withdrawalsPaused_ withdrawalsPaused_)) publicpublic onlyOwne onlyOwne
 withdrawalsPaused withdrawalsPaused == withdrawalsPaused_ withdrawalsPaused_;;
 emitemit WithdrawalPausedToggledWithdrawalPausedToggled((withdrawalsPausedwithdrawalsPaused,, withdrawalsPaused_ withdrawalsPaused_));;
}}

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (2.5)

Recommendation
Update the WithdrawalPausedToggled event emission to accurately reflect both the old and new
states of the withdrawalsPaused variable.

/**/**
 * @notice Toggles the withdrawals paused state * @notice Toggles the withdrawals paused state
 * @dev Can only be called by the owner. Emits a `WithdrawalPausedToggled * @dev Can only be called by the owner. Emits a `WithdrawalPausedToggled
 * @param withdrawalsPaused_ The new state of the withdrawals paused stat * @param withdrawalsPaused_ The new state of the withdrawals paused stat
 */ */
functionfunction toggleWithdrawalsPausedtoggleWithdrawalsPaused((boolbool withdrawalsPaused_ withdrawalsPaused_)) publicpublic onlyOwne onlyOwne
 emitemit WithdrawalPausedToggledWithdrawalPausedToggled((withdrawalsPausedwithdrawalsPaused,, withdrawalsPaused_ withdrawalsPaused_));;
 withdrawalsPaused withdrawalsPaused == withdrawalsPaused_ withdrawalsPaused_;;
}}

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N

This modification ensures the WithdrawalPausedToggled event reliably logs the old and new states
of the withdrawalsPaused variable, improving transparency and usability of the event.

Remediation

SOLVED: The Concrete team fixed this finding in commit 04cc962 by correctly emitting the old and
new values as recommended.

Remediation Hash
https://github.com/Blueprint-Finance/sc_earn-v1/commit/04cc962de489932fe53766ee145fbcd392
10ed40

https://github.com/Blueprint-Finance/sc_earn-v1/commit/04cc962de489932fe53766ee145fbcd39210ed40
https://github.com/Blueprint-Finance/sc_earn-v1/commit/04cc962de489932fe53766ee145fbcd39210ed40

7. 2 P OT E N T I A L U P G R A D E A B I L I T Y C O N C E R N S D U E TO N E W

G LO BA L STAT E VA R I A B L E

// INFORMATIONAL

Description
The addition of the withdrawalsPaused state variable in the ConcreteMultiStrategyVault contract
introduces a potential upgradeability issue if this contract is part of a proxy-based upgradeable
system. In such systems, storage layout consistency between the implementation contracts is
critical. Adding a new state variable without considering the existing storage layout risks creating
storage collisions, leading to unintended behavior or state corruption.

Note: this finding was downgraded to informational because the Concrete team indicated that the
deployment would be from scratch.

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (1.7)

Recommendation

Verify Storage Layout Consistency: Before deploying the upgradable contract, ensure that the
new state variable does not collide with existing variables in the storage layout. Use tools such as
OpenZeppelin Upgrades plugins to detect potential issues.

Explicit Storage Slot Management: If required, use explicit storage slot definitions for new state
variables in upgradeable contracts. For example:

/// @notice Indicates if the vault withdrawals are paused/// @notice Indicates if the vault withdrawals are paused
/// @dev Mapped to a specific storage slot to prevent collisions/// @dev Mapped to a specific storage slot to prevent collisions
boolbool publicpublic withdrawalsPaused withdrawalsPaused;;
uint256uint256[[5050]] privateprivate __gap __gap;; // Reserve slots for future use// Reserve slots for future use

Proper Testing: Simulate and test the upgrade process in a development environment to validate
that storage remains consistent and no data corruption occurs.

Remediation

SOLVED: The Concrete team fixed this finding in commit 04cc962 by adding storage gaps as
recommended.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N

Remediation Hash
https://github.com/Blueprint-Finance/sc_earn-v1/commit/04cc962de489932fe53766ee145fbcd392
10ed40

7. 3 E R RO R A N D EV E N T M I S S I N G N ATS P EC

D O C U M E N TAT I O N

// INFORMATIONAL

Description
The new error and event introduced in the contract lack complete NatSpec documentation. Proper
NatSpec annotations are crucial for ensuring that the purpose, parameters, and context of these
errors and events are clear to developers, auditors, and external consumers of the smart contract.

BVSS

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:P/S:C (0.0)

Recommendation
Add complete NatSpec annotations to all errors and events, including detailed descriptions of their
purpose and parameters.

Remediation

SOLVED: The Concrete team fixed this finding in commit 160244a by adding NatSpec comments as
recommended.

Remediation Hash
https://github.com/Blueprint-Finance/sc_earn-v1/commit/160244a23e3761629af2e0f86fbd447fa9
6b2877

https://github.com/Blueprint-Finance/sc_earn-v1/commit/04cc962de489932fe53766ee145fbcd39210ed40
https://github.com/Blueprint-Finance/sc_earn-v1/commit/04cc962de489932fe53766ee145fbcd39210ed40
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:P/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:P/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:P/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:P/S:C
https://github.com/Blueprint-Finance/sc_earn-v1/commit/160244a23e3761629af2e0f86fbd447fa96b2877
https://github.com/Blueprint-Finance/sc_earn-v1/commit/160244a23e3761629af2e0f86fbd447fa96b2877

7. 4 TO G G L E WI T H D R AWA L S PAU S E D F U N C T I O N C O U L D B E

D EC L A R E D AS E X T E R N A L

// INFORMATIONAL

Description
The toggleWithdrawalsPaused() function is declared as public, which allows it to be called both
internally and externally. However, based on its purpose and usage (exclusively by the contract owner
to toggle the withdrawals paused state), there is no indication that this function needs to be called
internally.

BVSS

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:P/S:C (0.0)

Recommendation
Change the visibility of toggleWithdrawalsPaused() from public to external to align with Solidity
best practices and better reflect its intended purpose as an externally callable function.

Remediation

SOLVED: The Concrete team fixed this finding in commit 04cc962 by correctly emitting the old and
new values as recommended.

Remediation Hash
https://github.com/Blueprint-Finance/sc_earn-v1/commit/04cc962de489932fe53766ee145fbcd392
10ed40

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:P/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:P/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:P/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:P/S:C
https://github.com/Blueprint-Finance/sc_earn-v1/commit/04cc962de489932fe53766ee145fbcd39210ed40
https://github.com/Blueprint-Finance/sc_earn-v1/commit/04cc962de489932fe53766ee145fbcd39210ed40

8 . AU TO M AT E D T EST I N G

STATIC ANALYSIS REPORT

D e s c r i p t i o n

Halborn used automated testing techniques to enhance the coverage of certain areas of the smart
contracts in scope. Among the tools used was Slither, a Solidity static analysis framework. After
Halborn verified the smart contracts in the repository and was able to compile them correctly into
their abis and binary format, Slither was run against the contracts. This tool can statically verify
mathematical relationships between Solidity variables to detect invalid or inconsistent usage of the
contracts' APIs across the entire code-base.

All issues identified by Slither were proved to be false positives or have been added to the issue list in
this report.

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or
immediately following any material changes to the codebase, whichever comes first. This approach is crucial for
maintaining the project’s integrity and addressing potential vulnerabilities introduced by code modifications.

