/| Security Assessment 10.20.2025 - 10.23.2025

Concrete Predeposit

Vault
Blueprint Finance

=/\LL_BLIRIN

Concrete Predeposit Vaulit - Blueprint Finance

Prepared by: gl HALBORN

Last Updated 11/10/2025

Date of Engagement: October 20th, 2025 - October 23rd, 2025

Summary

100°% O OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALLFINDINGS CRITICAL HIGH MEDIUM LOW INFORMATIONAL
4 (1 1 o 1 2

TABLE OF CONTENTS

N 0O o B 0N

. Introduction

. Assessment summary

. Test approach and methodology

. Risk methodology

. Scope

. Assessment summary & findings overview
. Findings & Tech Details

7.1 Inconsistent replay prevention between origin and destination chains can lead to loss of funds

7.2 Uncompacted batch arrays can exceed message size limits potentially introducing a denial of
service

7.3 Missing array length validation when handling batch claims
7.4 Missing recipient address validation during emergency withdrawal

Blueprint Finance engaged Halborn to perform a security assessment of their smart contracts
beginning on October 20th, 2025 and ending on October 23rd, 2025. The assessment scope was limited
to the smart contracts provided to Halborn. Commit hashes and additional details are available in the
Scope section of this report.

The reviewed contracts implement a cross-chain share claiming mechanism built on LayerZero that
enables users to deposit assets on Layer 1 (L1), burn their shares, and receive equivalent shares on Layer
2 (L2).

2. Assessment Summary

Halborn assigned 1 full-time security engineer to conduct a comprehensive review of the smart
contracts within scope. The engineer is an expert in blockchain and smart contract security, with
advanced skills in penetration testing and smart contract exploitation, as well as extensive knowledge of
multiple blockchain protocols.

The objectives of this assessment were to:

« Identify potential security vulnerabilities within the smart contracts.
« Verify that the smart contract functionality operates as intended.

In summary, Halborn identified several areas for improvement to reduce the likelihood and impact of
security risks, which were addressed by the Blueprint Finance team.The main ones were:

e Add address validation and event emission in emergency withdrawals to prevent
accidental fund loss.

« Implement explicit replay prevention on the origin chain to align with the
destination chain.

o Compact batch arrays before sending cross—chain messages to avoid oversized
payloads.

e Add array length checks in batch processing to avoid mismatched input errors.

3. Test Approach And Methodology

Halborn performed a combination of a manual review of the source code and automated security
testing to balance efficiency, timeliness, practicality, and accuracy in regard to the scope of the program
assessment. While manual testing is recommended to uncover flaws in business logic, processes, and
implementation; automated testing techniques help enhance coverage of programs and can quickly
identify items that do not follow security best practices.

The following phases and associated tools were used throughout the term of the assessment:

« Research into the architecture and purpose of the smart contracts.
« Manual code review and walkthrough of the smart contracts.

« Manual assessment of critical Solidity variables and functions to identify potential vulnerability
classes.

« Manual testing using custom scripts.
« Static security analysis of the scoped contracts and imported functions.
« Local deployment and testing with Foundry & Hardhat.

4. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity

Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means

by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

41 EXPLOITABILITY

ATTACK ORIGIN [AO).

Captures whether the attack requires compromising a specific account.
ATTACK COST (AC).

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

ATTACK COMPLEXITY (AX]):

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory

challenges.

METRICS:

EXPLOITABILITY METRIC (ME) METRIC VALUE NUMERICAL VALUE

.. Arbitrary (AO:A) 1

Attack Origin (AO) Specific (AO:S) 0.2
Low (AC:L) 1

Attack Cost (AC) Medium (AC:M) 0.67

High (AC:H) 0.33

EXPLOITABILITY METRIC (ME) METRIC VALUE NUMERICAL VALUE

Low (AX:L) 1
Attack Complexity (AX) Medium (AX:M) 0.67
High (AX:H) 0.33

Exploitability F is calculated using the following formula:

E:I_[me

4.2 IMPACT
CONFIDENTIALITY (C):

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

INTEGRITY (I):

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVAILABILITY ([(A):

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

DEPOSIT (D):

Measures the impact to the deposits made to the contract by either users or owners.
YIELD (Y):

Measures the impact to the yield generated by the contract for either users or owners.

METRICS.:
IMPACT METRIC (M) METRIC VALUE NUMERICAL VALUE
None (C:N) 0
Low (C:L) 0.25
Confidentiality (C) Medium (C:M) 0.5
High (C:H) 0.75
Critical (C:C) 1

IMPACT METRIC (M7) METRIC VALUE NUMERICAL VALUE
None (I:N) 0
Low (I:L) 0.25
Integrity (1) Medium (I:M) 0.5
High (I:H) 0.75
Critical (I:C) 1
None (A:N) 0
Low (A:L) 0.25
Availability (A) Medium (A:M) 0.5
High (A:H) 0.75
Critical (A:C) 1
None (D:N) 0
Low (D:L) 0.25
Deposit (D) Medium (D:M) 0.5
High (D:H) 0.75
Critical (D:C) 1
None (Y:N) 0]
Low (Y:L) 0.25
Yield (Y) Medium (Y:M) 0.5
High (Y:H) 0.75
Critical (Y:C) 1

Impact I is calculated using the following formula:

> my — max(my)
4

I = max(my) +

4.3 SEVERITY COEFFICIENT
REVERSIBILITY [R):

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

SCOPE (S):

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

METRICS:
SEVERITY COEFFICIENT (C) COEFFICIENT VALUE NUMERICAL VALUE
None (R:N) 1
Reversibility () Partial (R:P) 0.5
Full (R:F) 0.2
3 (Changed (S:C) 1.25
cope (8) Unchanged (S:U) 1

Severity Coefficient C'is obtained by the following product:

The Vulnerability Severity Score S is obtained by:

The score is rounded up to 1 decimal places.

C =rs

S = min(10, EIC % 10)

SEVERITY

SCORE VALUE RANGE

45-6.9

REPOSITORY

(a) Repository: earn-v2-core

(b) Assessed Commit ID: a0adc68

(c) Items in scope:
« src/periphery/predeposit/PredepostVaultOApp.sol
« src/periphery/predeposit/ShareDistributor.sol
« src/periphery/lib/PredepostVaultOAppStoragelib.sol
« src/implementation/ConcretePredepositVaultimpl.sol
« src/interface/IConcretePredepositVaultimpl.sol

« src/lib/storage/ConcretePredepositVaultimplStoragelib.sol
« periphery/auxiliary/TwoWayFeeSplitter.sol

Out-of-Scope: LayerZero protocol internals, existing vault and strategy logic.

REMEDIATION COMMIT ID:

« 3b4febb

Out-of-Scope: New features/implementations after the remediation commit IDs.

6. ASSESSMENT SUMMARY & FINDINGS OVERVIEW

CRITICAL HIGH MEDIUM LOW
o 1 o 1
INFORMATIONAL

https://github.com/Blueprint-Finance/earn-v2-core
https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5c3c53465e46f1fc706d79d8602343869

SECURITY ANALYSIS

INCONSISTENT REPLAY PREVENTION BETWEEN ORIGIN
AND DESTINATION CHAINS CAN LEAD TO LOSS OF
FUNDS

UNCOMPACTED BATCH ARRAYS CAN EXCEED MESSAGE
SIZE LIMITS POTENTIALLY INTRODUCING A DENIAL OF
SERVICE

MISSING ARRAY LENGTH VALIDATION WHEN HANDLING
BATCH CLAIMS

MISSING RECIPIENT ADDRESS VALIDATION DURING
EMERGENCY WITHDRAWAL

RISK LEVEL

INFORMATIONAL

INFORMATIONAL

REMEDIATION DATE

SOLVED - 10/27/2025

SOLVED - 10/27/2025

SOLVED - 10/27/2025

SOLVED - 10/27/2025

7. FINDINGS 8 TECH DETAILS

7.1 INCONSISTENT REPLAY PREVENTION BETWEEN ORIGIN
AND DESTINATION CHAINS CANLEAD TO LOSS OF FUNDS

/] HIGH

Description

The protocol’s cross-chain predeposit and claim mechanism relies on coordinated logic between an origin
chain (L1) and a destination chain (L2). When users move shares between chains, both sides must
enforce consistent validation and replay protection rules to prevent multiple claims for the same balance.

However, the current implementation introduces an asymmetric replay prevention model. On the origin
chain, users can trigger claimOnTargetChain() multiple times because there is no explicit check
marking them as having already claimed. The function burns the user’s shares and sends a cross-chain
message to initiate distribution on the target chain. Meanwhile, on the destination chain, the
ShareDistributor contract maintains a mapping that prevents multiple claims.

Additionally, this issue also exists within the batch claim logic. If a single user in a batch has already
claimed their shares on L2, the _handleBatchClaim() function reverts the entire transaction when it
encounters the AlreadyClaimed condition. Because this happens after all L1 changes are finalized, all
users in that batch could lose their shares. The L1 state shows burned tokens, while the L2 distribution
never occurs due to the revert, breaking the invariant that "L1 burned amount equals L2 distributed
amount".

Code Location

The ConcretePredepositVaultImpl::claimOnTargetChain function and its batch claim variant allow
multiple claims on the origin chain:

73 | function claimOnTargetChain(bytes calldata options) external payable nonReentrant withYieldAcc
4 PDVLib.ConcretePredepositVaultImplStorage storage $ = PDVLib.fetch(Q);

75

76 // Ensure self claims are enabled

7 require($.selfClaimsEnabled, SelfClaimsDisabled());

78

79 _validateClaimConditions($);

80

81 // Get user's current share balance

82 uint256 userShares = balanceOf(msg.sender);

83 require(userShares != 0, NoSharesToClaim());

84

85 // decrease cached totalAssets proportionally to the user's shares to maintain the share p
86 uint256 assets = userShares.calcConvertToAssets(totalSupply(), cachedTotalAssets(), Math.R
87 CachedVaultStatelib.fetch().cachedTotalAssets = cachedTotalAssets() - assets;

88

89 _burn(msg.sender, userShares);

20

91 // Store locked shares

92 $.lockedShares[msg.sender] += userShares;

93

% bytes memory payload = abi.encode(MSG_TYPE_CLAIM, msg.sender, userShares);

95

9% // Send the message via the OApp (quote and fee validation done internally)

97 IPredepostVaultOApp($.oapp).send{value: msg.value}(payload, options, msg.sender);

98

00

1éé | emit SharesClaimedOnTargetChain(msg.sender, userShares);
}

The ShareDistributor::_handleSingleClaim function and its batch claim variant restricts multiple

claims on the destination chain:

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

function _handleSingleClaim(bytes calldata message, bytes32 guid) internal {
// Decode single claim: msgType, user address, shares amount
(, address user, uint256 shares) = abi.decode(message, (uintl6, address, uint256));

// Check if user has already claimed
uint256 alreadyClaimed = claimedShares[user];
if (alreadyClaimed != 0) {
revert AlreadyClaimed(user, alreadyClaimed);
ks

// Check if distributor has enough shares
uint256 availableShares = IERC20(targetVault).balanceOf(Caddress(this));
if (availableShares < shares) {
revert InsufficientShares(shares, availableShares);
ks

// Record claimed amount before transfer
claimedShares[user] = shares;

// Transfer shares from distributor to user
IERC20(targetVault).transfer(user, shares);

// Emit event for tracking
emit SharesDistributed(user, shares, guid);

The ConcretePredepositVaultImpl::batchClaimOnTargetChain function burns the shares on the

origin chain before relaying the message call:

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
vl
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

function batchClaimOnTargetChain(bytes calldata addressesData, bytes calldata options)
external
payable
nonReentrant
withYieldAccrual
onlyRole(RolesLib.VAULT_MANAGER)

PDVLib.ConcretePredepositVaultImplStorage storage $ = PDVLib.fetch(Q);
_validateClaimConditions($);

// Decode addresses array

address[] memory addresses = abi.decode(addressesData, (address[]));

require(addresses.length > 0, EmptyAddressesArray());

uint256[] memory sharesArray = new uint256[](addresses.length);
uint256 totalShares = 0;

for (uint256 i = 0; i < addresses.length; i++) {
address user = addresses[i];
require(user != address(@), InvalidUserAddress());

uint256 userShares = balanceOf(user);
if (userShares == @) continue; // Skip users with no shares, already claimed, duplicat

// decrease cached totalAssets proportionally to the user's shares to maintain the sha
uint256 assets = userShares.calcConvertToAssets(totalSupply(), cachedTotalAssets(), Ma
CachedVaultStatelib.fetch().cachedTotalAssets = cachedTotalAssets() - assets;
_burnCuser, userShares);

// Store locked shares
$.lockedShares[user] += userShares;

// Store in batch arrays
sharesArray[i] = userShares;

139 totalShares += userShares;

140

141 emit SharesClaimedOnTargetChain(user, userShares);

142 1

143

144 require(totalShares > @, NoSharesInBatch());

145

146 bytes memory payload = abi.encode(MSG_TYPE_BATCH_CLAIM, addresses, sharesArray);
147

148 // Send the message via the OApp (quote and fee validation done internally)

149 IPredepostVaultOApp($.oapp).send{value: msg.value}(payload, options, msg.sender);
150 | }

The ShareDistributor::_handleBatchClaim function will continually revert if any of the users in the
array has already claimed:

137 | function _handleBatchClaim(bytes calldata message, bytes32 guid) internal {
138 // Decode batch claim: msgType, addresses array, shares array

139 (, address[] memory users, uint256[] memory sharesArray) = abi.decode(message, (uintl6, ad
140

141 // Process each user in the batch

142 for (uint256 1 = 0; i < users.length; i++) {

143 if (sharesArray[i] == @) continue; // Skip if no shares

144

145 // Check if user has already claimed

146 uint256 alreadyClaimed = claimedShares[users[i]];

147 if (alreadyClaimed != 0) {

148 revert AlreadyClaimed(users[i], dalreadyClaimed);

149 }

150

151 // Check if distributor has enough shares

152 uint256 availableShares = IERC20(targetVault).balanceOf(address(this));
153 if CavailableShares < sharesArray[i]) {

154 revert InsufficientShares(sharesArray[i], availableShares);

155

156 ’

157 // Record claimed amount before transfer

153 claimedShares[users[i]] = sharesArray[i];

15

160 // Transfer shares from distributor to user

12% IERC20(targetVault).transfer(users[i], sharesArray[i]);

1 ks

163

164 // Emit batch event for tracking

122 emit BatchSharesDistributed(users, sharesArray, guid);

1 3

Proof of Concept

This POC demonstrates that users can lose funds permanently when the origin chain burns their shares
but the destination chain rejects the claim due to replay protection:

pragma solidity A0.8.24;
import {ConcretePredepositVaultImplBaseSetup} from "../../common/ConcretePredepositVaultImplBaseSetup
import {OptionsBuilder} from "@layerzerolabs/oapp-evm/contracts/oapp/libs/OptionsBuilder.sol";
import {IERC20} from "®@openzeppelin-contracts/token/ERC20/IERC20.sol";
import {Origin} from "@layerzerolabs/oapp-evm/contracts/oapp/0App.sol”;
contract FIND@@lInconsistentReplayPreventionTest is ConcretePredepositVaultImplBaseSetup {
using OptionsBuilder for bytes;
address public alice;
uint256 public constant INITIAL_DEPOSIT = 1000el8;
error AlreadyClaimed(Caddress user, uint256 previouslyClaimed);
function setUp() public override {
super.setUp();
alice = makeAddr("alice");
asset.mint(alice, INITIAL_DEPOSIT * 2);

Iy
function test_L1_allows_multiple_claims_but_L2_prevents_them() public {

vm.startPrank(alice);

asset.approve(address(predepositVault), INITIAL_DEPOSIT * 2);
predepositVault.deposit(INITIAL_DEPOSIT, alice);

vm.stopPrank();

bytes memory firstMessage = abi.encode(uintl6(1l), alice, INITIAL_DEPOSIT);

bytes32 firstGuid = keccak256("first-claim");

Origin memory firstOrigin = Origin({srcEid: aEid, sender: addressToBytes32(address(predeposit
vm.prank(address(endpoints[bEid]));

distributor.lzReceive(firstOrigin, firstGuid, firstMessage, address(@), "");
assertEq(IERC20(Caddress(destinationVault)). balanceOf(allce), INITIAL_DEPOSIT);

bytes memory secondMessage = abi.encode(uintl16(1l), alice, INITIAL_DEPOSIT);

bytes32 secondGuid = keccak256("second-claim™);

Origin memory secondOrigin = Origin({srcEid: aEid, sender: addressToBytes32(address(predeposi
vm.prank(address(endpoints[bEid]));
vm.expectRevert(abi.encodeWithSelector(AlreadyClaimed.selector, alice, INITIAL_DEPOSIT));
distributor.lzReceive(secondOrigin, secondGuid, secondMessage, address(@), "");
assertEq(IERC20Caddress(destinationVault)).balanceOf(alice), INITIAL_DEPOSIT);

BVSS
AQ:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I1:M/D:H/Y:N (8.8)

Recommendation

Introduce explicit replay protection on the origin chain to align with the destination chain.

Remediation Comment

SOLVED: The Blueprint Finance team solved this issue by removing replay protection on L2 and allowing
claim accumulation on both origin and destination chains.

Remediation Hash

https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5c3c53465e46f1fc706d79d860234
3869

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:H/Y:N
https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5c3c53465e46f1fc706d79d8602343869
https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5c3c53465e46f1fc706d79d8602343869

7.2 UNCOMPACTED BATCH ARRAYS CAN EXCEED MESSAGE
SIZE LIMITS POTENTIALLY INTRODUCING A DENIAL OF
SERVICE

/] LOW

Description

The batchClaimOnTargetChain() function allows the contract to process multiple user claims in one
transaction and send them as a single message through LayerZero’s cross-chain messaging framework.
The function currently constructs arrays (addresses and sharesArray) using the full input length even
when many of those users hold zero shares or are duplicates.

Instead of compacting the data to include only valid claim entries, the logic encodes all entries (including
those with zero shares) into the final payload. This can lead to excessively large payloads, since each
address adds 20 bytes and each share value adds 32 bytes. LayerZero imposes a maximum payload size
(10,000 bytes) for safety and efficiency. If this limit is exceeded, the message transmission reverts,
blocking the entire batch claim from being processed.

Furthermore, sending unnecessarily large payloads wastes gas and increases cross-chain messaging
costs.
Code Location

The ConcretePredepositVaultImpl::batchClaimOnTargetChain function only skips user addresses
with zero share amount but does not prune the batch:

103 | function batchClaimOnTargetChain(bytes calldata addressesData, bytes calldata options)
104 external

105 payable

106 nonReentrant

107 withYieldAccrual

108 onlyRole(RolesLib.VAULT_MANAGER)

19 | {

110 PDVLib.ConcretePredepositVaultImplStorage storage $ = PDVLib.fetch();

111

112 _validateClaimConditions($);

113

114 // Decode addresses array

115 address[] memory addresses = abi.decode(addressesData, (address[]));

116 require(addresses.length > @, EmptyAddressesArray());

117

118 uint256[] memory sharesArray = new uint256[](addresses.length);

119 uint256 totalShares = 0;

120

121 for (uint256 i = 0; i < addresses.length; i++) {

122 address user = addresses[i];

123 require(user != address(@), InvalidUserAddress());

124

125 uint256 userShares = balanceOf(user);

126 if (userShares == @) continue; // Skip users with no shares, already claimed, duplicat
127

128 // decrease cached totalAssets proportionally to the user's shares to maintain the sha
129 uint256 assets = userShares.calcConvertToAssets(totalSupply(), cachedTotalAssets(), Ma
130 CachedVaultStatelLib.fetch().cachedTotalAssets = cachedTotalAssets() - assets;
131

132 _burn(Cuser, userShares);

133

134 // Store locked shares

135 $.lockedShares[user] += userShares;

136

1570 // Store in batch arrays
138 sharesArray[i] = userShares;
139 totalShares += userShares;
140
11% emit SharesClaimedOnTargetChain(user, userShares);
ks
143
%jg require(totalShares > @, NoSharesInBatch());
11? bytes memory payload = abi.encode(MSG_TYPE_BATCH_CLAIM, addresses, sharesArray);
148 // Send the message via the OApp (quote and fee validation done internally)
%gg IPredepostVaultOApp($.oapp).send{value: msg.value}(payload, options, msg.sender);
}
BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:M/I:N/D:N/Y:N (3.4)

Recommendation

Consider refactoring the function to compact arrays before encoding, including only users who have a
positive share balance.

Remediation Comment

SOLVED: The Blueprint Finance team solved this issue by capping batch size at 150 users, keeping
payloads under LayerZero's 10KB limit.

Remediation Hash

https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5c3c53465e46f1fc706d79d860234
3869

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5c3c53465e46f1fc706d79d8602343869
https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5c3c53465e46f1fc706d79d8602343869

7.3 MISSING ARRAY LENGTH VALIDATION WHEN HANDLING
BATCH CLAIMS

// INFORMATIONAL

Description

The _handleBatchClaim() function on the destination chain decodes two arrays from the incoming

LayerZero message: a list of users and a corresponding list of share amounts. The function assumes both

arrays have identical lengths but never explicitly validates this assumption.

While the current implementation on the origin chain does encode equal-length arrays, this dependency

makes the destination logic fragile. If future code changes cause the arrays to differ in length, this could

lead to to inconsistent behavior and potential discrepancies in user distribution.

Code Location

Missing array length match validation in ShareDistributor::_handleBatchClaim function:

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

BVSS

function _handleBatchClaim(bytes calldata message, bytes32 guid) internal {
// Decode batch claim: msgType, addresses array, shares array
(, address[] memory users, uint256[] memory sharesArray) = abi.decode(message, (uintl6, ad

// Process each user in the batch
for (uint256 i = 0; i < users.length; i++) {
if (sharesArray[i] == @) continue; // Skip if no shares

// Check if user has already claimed
uint256 alreadyClaimed = claimedShares[users[i]];
if (alreadyClaimed != 0) {
revert AlreadyClaimed(users[i], alreadyClaimed);
ks

// Check if distributor has enough shares
uint256 availableShares = IERC20(targetVault).balanceOf(address(this));
if CavailableShares < sharesArray[i]) {
revert InsufficientShares(sharesArray[i], availableShares);
ks

// Record claimed amount before transfer
claimedShares[users[i]] = sharesArray[i];

// Transfer shares from distributor to user
IERC20(targetVault).transfer(users[i], sharesArray[i]);

}

// Emit batch event for tracking
emit BatchSharesDistributed(users, sharesArray, guid);

AQ:A/AC:L/AX:M/R:N/S:U/C:N/A:L/I:N/D:N/Y:N (1.7)

Recommendation

A check must be added at the start of _handleBatchClaim to ensure users.length ==

sharesArray. length, and the transaction must be reverted with a clear custom error (for example,

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:L/I:N/D:N/Y:N

ArrayLengthMismatch) if a mismatch is detected. Iteration must be performed using the validated
length, and explicit bounds-safe access must be enforced before reading sharesArray[i] .

Remediation Comment

SOLVED: The Blueprint Finance team solved this issue by adding a length check ensuring users and
sharesArray arrays match before processing.

Remediation Hash

https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5c3c53465e46f1fc706d79d860234
3869

https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5c3c53465e46f1fc706d79d8602343869
https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5c3c53465e46f1fc706d79d8602343869

7.4 MISSING RECIPIENT ADDRESS VALIDATION DURING
EMERGENCY WITHDRAWAL

// INFORMATIONAL

Description

The emergencyWithdraw() functionin the ShareDistributor contract allows the contract owner to
withdraw tokens to any specified address but fails to validate the recipient parameter. This omission can
lead to irreversible fund loss if the function is called with the zero address (address(@)) oran
incorrect recipient. Similar functions in the contract validate address parameters, but this one does not,
creating an inconsistency and potential for human error. Additionally, no event is emitted to track
emergency withdrawals.

Code Location

Absence of data validation on the recipient parameter of the ShareDistributor::emergencyWithdraw
function:

181 | function emergencyWithdraw(uint256 amount, address recipient) external onlyOwner {
182 IERC20(targetVault).transfer(recipient, amount);
183 | 1}

BVSS
AQ:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N (1.5)

Recommendation

Add checks to ensure the recipient is not the zero address and that the amount is greater than zero.
Additionally, add the appropriate event emission.

Remediation Comment

SOLVED: The Blueprint Finance team solved this issue by hardcoding emergency withdrawals to
msg.sender instead of accepting user input.

Remediation Hash

https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5¢c3c53465e46f1fc706d79d860234
3869

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N
https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5c3c53465e46f1fc706d79d8602343869
https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5c3c53465e46f1fc706d79d8602343869

