
// Security Assessment 10.20.2025 - 10.23.2025

Concrete Predeposit
Vault
Blueprint Finance

C o n c r e t e P r e d e p o s i t Va u l t - B l u e p r i n t F i n a n c e

Prepared by: HALBORN

Last Updated 11/10/2025

Date of Engagement: October 20th, 2025 - October 23rd, 2025

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS

4

CRITICAL

0

HIGH

1

MEDIUM

0

LOW

1

INFORMATIONAL

2

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Inconsistent replay prevention between origin and destination chains can lead to loss of funds
7.2 Uncompacted batch arrays can exceed message size limits potentially introducing a denial of
service
7.3 Missing array length validation when handling batch claims
7.4 Missing recipient address validation during emergency withdrawal

1 0 0%

1 . I n t r o d u c t i o n

Blueprint Finance engaged Halborn to perform a security assessment of their smart contracts
beginning on October 20th, 2025 and ending on October 23rd, 2025. The assessment scope was limited
to the smart contracts provided to Halborn. Commit hashes and additional details are available in the
Scope section of this report.

The reviewed contracts implement a cross-chain share claiming mechanism built on LayerZero that
enables users to deposit assets on Layer 1 (L1), burn their shares, and receive equivalent shares on Layer
2 (L2).

2. A s s e s s m e n t S u m m a r y

Halborn assigned 1 full-time security engineer to conduct a comprehensive review of the smart
contracts within scope. The engineer is an expert in blockchain and smart contract security, with
advanced skills in penetration testing and smart contract exploitation, as well as extensive knowledge of
multiple blockchain protocols.

The objectives of this assessment were to:

Identify potential security vulnerabilities within the smart contracts.
Verify that the smart contract functionality operates as intended.

In summary, Halborn identified several areas for improvement to reduce the likelihood and impact of
security risks, which were addressed by the Blueprint Finance team . The main ones were:

Add address validation and event emission in emergency withdrawals to prevent
accidental fund loss.

Implement explicit replay prevention on the origin chain to align with the
destination chain.

Compact batch arrays before sending cross-chain messages to avoid oversized
payloads.

Add array length checks in batch processing to avoid mismatched input errors.

3. Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of a manual review of the source code and automated security
testing to balance efficiency, timeliness, practicality, and accuracy in regard to the scope of the program
assessment. While manual testing is recommended to uncover flaws in business logic, processes, and
implementation; automated testing techniques help enhance coverage of programs and can quickly
identify items that do not follow security best practices.

The following phases and associated tools were used throughout the term of the assessment:

Research into the architecture and purpose of the smart contracts.
Manual code review and walkthrough of the smart contracts.
Manual assessment of critical Solidity variables and functions to identify potential vulnerability

classes.
Manual testing using custom scripts.
Static security analysis of the scoped contracts and imported functions.
Local deployment and testing with Foundry & Hardhat.

4. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity
Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means
by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

4.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory
challenges.

M E T R I C S :

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

M ​E

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (C:N)
Low (C:L)

Medium (C:M)
High (C:H)

Critical (C:C)

0
0.25
0.5

0.75
1

M ​E

E

E = m ​∏ e

M ​I

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

C

r

s

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

C

C = rs

S

S = min(10,EIC ∗ 10)

5. S C O P E

REPOSITORY

(a) Repository: earn-v2-core

(b) Assessed Commit ID: a0adc68

(c) Items in scope:

src/periphery/predeposit/PredepostVaultOApp.sol
src/periphery/predeposit/ShareDistributor.sol
src/periphery/lib/PredepostVaultOAppStorageLib.sol
src/implementation/ConcretePredepositVaultImpl.sol
src/interface/IConcretePredepositVaultImpl.sol
src/lib/storage/ConcretePredepositVaultImplStorageLib.sol
periphery/auxiliary/TwoWayFeeSplitter.sol

Out-of-Scope: LayerZero protocol internals, existing vault and strategy logic.

REMEDIAT ION COMMIT ID :

354fe6b

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

0

HIGH

1

MEDIUM

0

LOW

1

INFORMATIONAL

2

https://github.com/Blueprint-Finance/earn-v2-core
https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5c3c53465e46f1fc706d79d8602343869

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

INCONSISTENT REPLAY PREVENTION BETWEEN ORIGIN
AND DESTINATION CHAINS CAN LEAD TO LOSS OF

FUNDS
HIGH SOLVED - 10/27/2025

UNCOMPACTED BATCH ARRAYS CAN EXCEED MESSAGE
SIZE LIMITS POTENTIALLY INTRODUCING A DENIAL OF

SERVICE
LOW SOLVED - 10/27/2025

MISSING ARRAY LENGTH VALIDATION WHEN HANDLING
BATCH CLAIMS

INFORMATIONAL SOLVED - 10/27/2025

MISSING RECIPIENT ADDRESS VALIDATION DURING
EMERGENCY WITHDRAWAL

INFORMATIONAL SOLVED - 10/27/2025

7. F I N D I N G S & T EC H D E TA I L S

7.1 I N C O N S I ST E N T R E P L AY P R EV E N T I O N B E T WE E N O R I G I N

A N D D EST I N AT I O N C H A I N S CA N L E A D TO LO S S O F F U N D S

// HIGH

Description
The protocol’s cross-chain predeposit and claim mechanism relies on coordinated logic between an origin
chain (L1) and a destination chain (L2). When users move shares between chains, both sides must
enforce consistent validation and replay protection rules to prevent multiple claims for the same balance.

However, the current implementation introduces an asymmetric replay prevention model. On the origin
chain, users can trigger claimOnTargetChain() multiple times because there is no explicit check
marking them as having already claimed. The function burns the user’s shares and sends a cross-chain
message to initiate distribution on the target chain. Meanwhile, on the destination chain, the
ShareDistributor contract maintains a mapping that prevents multiple claims.

Additionally, this issue also exists within the batch claim logic. If a single user in a batch has already
claimed their shares on L2, the _handleBatchClaim() function reverts the entire transaction when it
encounters the AlreadyClaimed condition. Because this happens after all L1 changes are finalized, all
users in that batch could lose their shares. The L1 state shows burned tokens, while the L2 distribution
never occurs due to the revert, breaking the invariant that "L1 burned amount equals L2 distributed
amount".

Code Location

The ConcretePredepositVaultImpl::claimOnTargetChain function and its batch claim variant allow
multiple claims on the origin chain:

function claimOnTargetChain(bytes calldata options) external payable nonReentrant withYieldAcc
 PDVLib.ConcretePredepositVaultImplStorage storage $ = PDVLib.fetch();

 // Ensure self claims are enabled
 require($.selfClaimsEnabled, SelfClaimsDisabled());

 _validateClaimConditions($);

 // Get user's current share balance
 uint256 userShares = balanceOf(msg.sender);
 require(userShares != 0, NoSharesToClaim());

 // decrease cached totalAssets proportionally to the user's shares to maintain the share p
 uint256 assets = userShares.calcConvertToAssets(totalSupply(), cachedTotalAssets(), Math.R
 CachedVaultStateLib.fetch().cachedTotalAssets = cachedTotalAssets() - assets;

 _burn(msg.sender, userShares);

 // Store locked shares
 $.lockedShares[msg.sender] += userShares;

 bytes memory payload = abi.encode(MSG_TYPE_CLAIM, msg.sender, userShares);

 // Send the message via the OApp (quote and fee validation done internally)
 IPredepostVaultOApp($.oapp).send{value: msg.value}(payload, options, msg.sender);

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

The ShareDistributor::_handleSingleClaim function and its batch claim variant restricts multiple
claims on the destination chain:

The ConcretePredepositVaultImpl::batchClaimOnTargetChain function burns the shares on the
origin chain before relaying the message call:

 emit SharesClaimedOnTargetChain(msg.sender, userShares);
}

99
100

function _handleSingleClaim(bytes calldata message, bytes32 guid) internal {
 // Decode single claim: msgType, user address, shares amount
 (, address user, uint256 shares) = abi.decode(message, (uint16, address, uint256));

 // Check if user has already claimed
 uint256 alreadyClaimed = claimedShares[user];
 if (alreadyClaimed != 0) {
 revert AlreadyClaimed(user, alreadyClaimed);
 }

 // Check if distributor has enough shares
 uint256 availableShares = IERC20(targetVault).balanceOf(address(this));
 if (availableShares < shares) {
 revert InsufficientShares(shares, availableShares);
 }

 // Record claimed amount before transfer
 claimedShares[user] = shares;

 // Transfer shares from distributor to user
 IERC20(targetVault).transfer(user, shares);

 // Emit event for tracking
 emit SharesDistributed(user, shares, guid);
}

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

function batchClaimOnTargetChain(bytes calldata addressesData, bytes calldata options)
 external
 payable
 nonReentrant
 withYieldAccrual
 onlyRole(RolesLib.VAULT_MANAGER)
{
 PDVLib.ConcretePredepositVaultImplStorage storage $ = PDVLib.fetch();

 _validateClaimConditions($);

 // Decode addresses array
 address[] memory addresses = abi.decode(addressesData, (address[]));
 require(addresses.length > 0, EmptyAddressesArray());

 uint256[] memory sharesArray = new uint256[](addresses.length);
 uint256 totalShares = 0;

 for (uint256 i = 0; i < addresses.length; i++) {
 address user = addresses[i];
 require(user != address(0), InvalidUserAddress());

 uint256 userShares = balanceOf(user);
 if (userShares == 0) continue; // Skip users with no shares, already claimed, duplicat

 // decrease cached totalAssets proportionally to the user's shares to maintain the sha
 uint256 assets = userShares.calcConvertToAssets(totalSupply(), cachedTotalAssets(), Ma
 CachedVaultStateLib.fetch().cachedTotalAssets = cachedTotalAssets() - assets;

 _burn(user, userShares);

 // Store locked shares
 $.lockedShares[user] += userShares;

 // Store in batch arrays
 sharesArray[i] = userShares;

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

The ShareDistributor::_handleBatchClaim function will continually revert if any of the users in the
array has already claimed:

Proof of Concept
This POC demonstrates that users can lose funds permanently when the origin chain burns their shares
but the destination chain rejects the claim due to replay protection:

pragma solidity ^0.8.24;
import {ConcretePredepositVaultImplBaseSetup} from "../../common/ConcretePredepositVaultImplBaseSetup
import {OptionsBuilder} from "@layerzerolabs/oapp-evm/contracts/oapp/libs/OptionsBuilder.sol";
import {IERC20} from "@openzeppelin-contracts/token/ERC20/IERC20.sol";
import {Origin} from "@layerzerolabs/oapp-evm/contracts/oapp/OApp.sol";
contract FIND001InconsistentReplayPreventionTest is ConcretePredepositVaultImplBaseSetup {
 using OptionsBuilder for bytes;
 address public alice;
 uint256 public constant INITIAL_DEPOSIT = 1000e18;
 error AlreadyClaimed(address user, uint256 previouslyClaimed);
 function setUp() public override {
 super.setUp();
 alice = makeAddr("alice");
 asset.mint(alice, INITIAL_DEPOSIT * 2);
 }
 function test_L1_allows_multiple_claims_but_L2_prevents_them() public {
 vm.startPrank(alice);

 totalShares += userShares;

 emit SharesClaimedOnTargetChain(user, userShares);
 }

 require(totalShares > 0, NoSharesInBatch());

 bytes memory payload = abi.encode(MSG_TYPE_BATCH_CLAIM, addresses, sharesArray);

 // Send the message via the OApp (quote and fee validation done internally)
 IPredepostVaultOApp($.oapp).send{value: msg.value}(payload, options, msg.sender);
}

139
140
141
142
143
144
145
146
147
148
149
150

function _handleBatchClaim(bytes calldata message, bytes32 guid) internal {
 // Decode batch claim: msgType, addresses array, shares array
 (, address[] memory users, uint256[] memory sharesArray) = abi.decode(message, (uint16, ad

 // Process each user in the batch
 for (uint256 i = 0; i < users.length; i++) {
 if (sharesArray[i] == 0) continue; // Skip if no shares

 // Check if user has already claimed
 uint256 alreadyClaimed = claimedShares[users[i]];
 if (alreadyClaimed != 0) {
 revert AlreadyClaimed(users[i], alreadyClaimed);
 }

 // Check if distributor has enough shares
 uint256 availableShares = IERC20(targetVault).balanceOf(address(this));
 if (availableShares < sharesArray[i]) {
 revert InsufficientShares(sharesArray[i], availableShares);
 }

 // Record claimed amount before transfer
 claimedShares[users[i]] = sharesArray[i];

 // Transfer shares from distributor to user
 IERC20(targetVault).transfer(users[i], sharesArray[i]);
 }

 // Emit batch event for tracking
 emit BatchSharesDistributed(users, sharesArray, guid);
}

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

 asset.approve(address(predepositVault), INITIAL_DEPOSIT * 2);
 predepositVault.deposit(INITIAL_DEPOSIT, alice);
 vm.stopPrank();
 bytes memory firstMessage = abi.encode(uint16(1), alice, INITIAL_DEPOSIT);
 bytes32 firstGuid = keccak256("first-claim");
 Origin memory firstOrigin = Origin({srcEid: aEid, sender: addressToBytes32(address(predeposit
 vm.prank(address(endpoints[bEid]));
 distributor.lzReceive(firstOrigin, firstGuid, firstMessage, address(0), "");
 assertEq(IERC20(address(destinationVault)).balanceOf(alice), INITIAL_DEPOSIT);
 bytes memory secondMessage = abi.encode(uint16(1), alice, INITIAL_DEPOSIT);
 bytes32 secondGuid = keccak256("second-claim");
 Origin memory secondOrigin = Origin({srcEid: aEid, sender: addressToBytes32(address(predeposi
 vm.prank(address(endpoints[bEid]));
 vm.expectRevert(abi.encodeWithSelector(AlreadyClaimed.selector, alice, INITIAL_DEPOSIT));
 distributor.lzReceive(secondOrigin, secondGuid, secondMessage, address(0), "");
 assertEq(IERC20(address(destinationVault)).balanceOf(alice), INITIAL_DEPOSIT);
 }
}

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:H/Y:N (8.8)

Recommendation
Introduce explicit replay protection on the origin chain to align with the destination chain.

Remediation Comment

SOLVED: The Blueprint Finance team solved this issue by removing replay protection on L2 and allowing
claim accumulation on both origin and destination chains.

Remediation Hash
https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5c3c53465e46f1fc706d79d860234
3869

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:H/Y:N
https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5c3c53465e46f1fc706d79d8602343869
https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5c3c53465e46f1fc706d79d8602343869

7. 2 U N C O M PAC T E D BATC H A R R AYS CA N E XC E E D M ES SAG E

S I Z E L I M I TS P OT E N T I A L LY I N T RO D U C I N G A D E N I A L O F

S E RV I C E

// LOW

Description
The batchClaimOnTargetChain() function allows the contract to process multiple user claims in one
transaction and send them as a single message through LayerZero’s cross-chain messaging framework.
The function currently constructs arrays (addresses and sharesArray) using the full input length even
when many of those users hold zero shares or are duplicates.

Instead of compacting the data to include only valid claim entries, the logic encodes all entries (including
those with zero shares) into the final payload. This can lead to excessively large payloads, since each
address adds 20 bytes and each share value adds 32 bytes. LayerZero imposes a maximum payload size
(10,000 bytes) for safety and efficiency. If this limit is exceeded, the message transmission reverts,
blocking the entire batch claim from being processed.

Furthermore, sending unnecessarily large payloads wastes gas and increases cross-chain messaging
costs.

Code Location

The ConcretePredepositVaultImpl::batchClaimOnTargetChain function only skips user addresses
with zero share amount but does not prune the batch:

function batchClaimOnTargetChain(bytes calldata addressesData, bytes calldata options)
 external
 payable
 nonReentrant
 withYieldAccrual
 onlyRole(RolesLib.VAULT_MANAGER)
{
 PDVLib.ConcretePredepositVaultImplStorage storage $ = PDVLib.fetch();

 _validateClaimConditions($);

 // Decode addresses array
 address[] memory addresses = abi.decode(addressesData, (address[]));
 require(addresses.length > 0, EmptyAddressesArray());

 uint256[] memory sharesArray = new uint256[](addresses.length);
 uint256 totalShares = 0;

 for (uint256 i = 0; i < addresses.length; i++) {
 address user = addresses[i];
 require(user != address(0), InvalidUserAddress());

 uint256 userShares = balanceOf(user);
 if (userShares == 0) continue; // Skip users with no shares, already claimed, duplicat

 // decrease cached totalAssets proportionally to the user's shares to maintain the sha
 uint256 assets = userShares.calcConvertToAssets(totalSupply(), cachedTotalAssets(), Ma
 CachedVaultStateLib.fetch().cachedTotalAssets = cachedTotalAssets() - assets;

 _burn(user, userShares);

 // Store locked shares
 $.lockedShares[user] += userShares;

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:M/I:N/D:N/Y:N (3.4)

Recommendation
Consider refactoring the function to compact arrays before encoding, including only users who have a
positive share balance.

Remediation Comment

SOLVED: The Blueprint Finance team solved this issue by capping batch size at 150 users, keeping
payloads under LayerZero's 10KB limit.

Remediation Hash
https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5c3c53465e46f1fc706d79d860234
3869

 // Store in batch arrays
 sharesArray[i] = userShares;
 totalShares += userShares;

 emit SharesClaimedOnTargetChain(user, userShares);
 }

 require(totalShares > 0, NoSharesInBatch());

 bytes memory payload = abi.encode(MSG_TYPE_BATCH_CLAIM, addresses, sharesArray);

 // Send the message via the OApp (quote and fee validation done internally)
 IPredepostVaultOApp($.oapp).send{value: msg.value}(payload, options, msg.sender);
}

137
138
139
140
141
142
143
144
145
146
147
148
149
150

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5c3c53465e46f1fc706d79d8602343869
https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5c3c53465e46f1fc706d79d8602343869

7. 3 M I S S I N G A R R AY L E N GT H VA L I DAT I O N WH E N H A N D L I N G

BATC H C L A I M S

// INFORMATIONAL

Description
The _handleBatchClaim() function on the destination chain decodes two arrays from the incoming
LayerZero message: a list of users and a corresponding list of share amounts. The function assumes both
arrays have identical lengths but never explicitly validates this assumption.

While the current implementation on the origin chain does encode equal-length arrays, this dependency
makes the destination logic fragile. If future code changes cause the arrays to differ in length, this could
lead to to inconsistent behavior and potential discrepancies in user distribution.

Code Location

Missing array length match validation in ShareDistributor::_handleBatchClaim function :

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:L/I:N/D:N/Y:N (1.7)

Recommendation
A check must be added at the start of _handleBatchClaim to ensure users.length ==
sharesArray.length , and the transaction must be reverted with a clear custom error (for example,

function _handleBatchClaim(bytes calldata message, bytes32 guid) internal {
 // Decode batch claim: msgType, addresses array, shares array
 (, address[] memory users, uint256[] memory sharesArray) = abi.decode(message, (uint16, ad

 // Process each user in the batch
 for (uint256 i = 0; i < users.length; i++) {
 if (sharesArray[i] == 0) continue; // Skip if no shares

 // Check if user has already claimed
 uint256 alreadyClaimed = claimedShares[users[i]];
 if (alreadyClaimed != 0) {
 revert AlreadyClaimed(users[i], alreadyClaimed);
 }

 // Check if distributor has enough shares
 uint256 availableShares = IERC20(targetVault).balanceOf(address(this));
 if (availableShares < sharesArray[i]) {
 revert InsufficientShares(sharesArray[i], availableShares);
 }

 // Record claimed amount before transfer
 claimedShares[users[i]] = sharesArray[i];

 // Transfer shares from distributor to user
 IERC20(targetVault).transfer(users[i], sharesArray[i]);
 }

 // Emit batch event for tracking
 emit BatchSharesDistributed(users, sharesArray, guid);
}

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:L/I:N/D:N/Y:N

ArrayLengthMismatch) if a mismatch is detected. Iteration must be performed using the validated
length, and explicit bounds-safe access must be enforced before reading sharesArray[i] .

Remediation Comment

SOLVED: The Blueprint Finance team solved this issue by adding a length check ensuring users and
sharesArray arrays match before processing.

Remediation Hash
https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5c3c53465e46f1fc706d79d860234
3869

https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5c3c53465e46f1fc706d79d8602343869
https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5c3c53465e46f1fc706d79d8602343869

7. 4 M I S S I N G R EC I P I E N T A D D R ES S VA L I DAT I O N D U R I N G

E M E RG E N CY WI T H D R AWA L

// INFORMATIONAL

Description
The emergencyWithdraw() function in the ShareDistributor contract allows the contract owner to
withdraw tokens to any specified address but fails to validate the recipient parameter. This omission can
lead to irreversible fund loss if the function is called with the zero address (address(0)) or an
incorrect recipient. Similar functions in the contract validate address parameters, but this one does not,
creating an inconsistency and potential for human error. Additionally, no event is emitted to track
emergency withdrawals.

Code Location

Absence of data validation on the recipient parameter of the ShareDistributor::emergencyWithdraw
function:

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N (1.5)

Recommendation
Add checks to ensure the recipient is not the zero address and that the amount is greater than zero.
Additionally, add the appropriate event emission.

Remediation Comment

SOLVED: The Blueprint Finance team solved this issue by hardcoding emergency withdrawals to
msg.sender instead of accepting user input.

Remediation Hash
https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5c3c53465e46f1fc706d79d860234
3869

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

function emergencyWithdraw(uint256 amount, address recipient) external onlyOwner {
 IERC20(targetVault).transfer(recipient, amount);
}

181
182
183

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N
https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5c3c53465e46f1fc706d79d8602343869
https://github.com/Blueprint-Finance/earn-v2-core/commit/354fe6b5c3c53465e46f1fc706d79d8602343869

