
// Smart Contract Security Assessment 11.04.2024 - 11.07.2024

Morpho Vault Strategy
Concrete

M o r p h o Va u l t St ra t e g y - C o n c r e t e

Prepared by: HALBORN

Last Updated 01/07/2025

Date of Engagement by: November 4th, 2024 - November 7th, 2024

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS

4

CRITICAL

0

HIGH

1

MEDIUM

0

LOW

1

INFORMATIONAL

2

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Inadvertent clearing of protectstrategy when managing strategies
7.2 Incorrect fee calculation due to exclusive comparison operators
7.3 Inconsistent reward harvesting flow
7.4 Unused imports and errors

8. Automated Testing

1 0 0%

1 . I n t r o d u c t i o n

Concrete engaged Halborn to conduct a security assessment on their smart contracts beginning on
November 4th and ending on November 7th, 2024. The security assessment was scoped to the smart
contracts provided to the Halborn team.

Commit hashes and further details can be found in the Scope section of this report.

2. A s s e s s m e n t S u m m a r y

The team at Halborn assigned a full-time security engineer to assess the security of the smart
contracts. The security engineer is a blockchain and smart-contract security expert with advanced
penetration testing, smart-contract hacking, and deep knowledge of multiple blockchain protocols.

The purpose of this assessment is to:

Ensure that smart contract functions operate as intended.
Identify potential security issues with the smart contracts.

In summary, Halborn identified some improvements to reduce the likelihood and impact of risks, which
were mostly addressed by the Concrete team :

Initialize the protectStrategy variable with the current value passed as a
parameter, in both addOrReplaceStrategy and removeStrategy functions.

In the calculateTieredFee function change the comparison operators to inclusive (<=
and >=) to ensure that boundary values are correctly included in the fee
calculations.

Refactor the claimRewardsAndSend function to avoid reverting on failure.
Remove all unused imports.

3. Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of manual review of the code and automated security testing to
balance efficiency, timeliness, practicality, and accuracy in regard to the scope of the smart contract
assessment. While manual testing is recommended to uncover flaws in logic, process, and
implementation; automated testing techniques help enhance coverage of smart contracts and can
quickly identify items that do not follow security best practices. The following phases and associated
tools were used throughout the term of the assessment:

Research into the architecture, purpose, and use of the platform.
Smart contract manual code review and walkthrough to identify any logic issue.
Thorough assessment of safety and usage of critical Solidity variables and functions in scope that

could lead to arithmetic related vulnerabilities.
Manual testing by custom scripts.
Graphing out functionality and contract logic/connectivity/functions (solgraph).
Static Analysis of security for scoped contract, and imported functions. (Slither).
Local or public testnet deployment (Foundry, Remix IDE).

4. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity
Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means
by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

4.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory
challenges.

M E T R I C S :

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

M ​E

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

M ​E

E

E = m ​∏ e

M ​I

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

C

r

s

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

C

C = rs

S

S = min(10,EIC ∗ 10)

5. S C O P E

F ILES AND REPOSITORY

(a) Repository: sc_earn-v1

(b) Assessed Commit ID: ecced27

(c) Items in scope:

src/strategies/StrategyBase.sol
src/strategies/Morpho/MorphoVaultStrategy.sol
src/libraries/MultiStrategiesVaultHelper.sol
The following file from e3c6a006923197230320e266e586e859f8eca344 commit was

added to the scope:
src/libraries/MultiStrategiesVaultHelper.sol

Out-of-Scope: Third party dependencies and economic attacks.

F ILES AND REPOSITORY

(a) Repository: sc_hub-and-spokes-libraries

(b) Assessed Commit ID: hf9753a

(c) Items in scope:

src/libraries/MorphoV1Helper.sol
src/libraries/TokenHelper.sol

Out-of-Scope: Third party dependencies and economic attacks.

REMEDIAT ION COMMIT ID :

dd30e9a
ccf8d86
e3c6a00
e3c6a00

Out-of-Scope: New features/implementations after the remediation commit IDs.

https://github.com/Blueprint-Finance/sc_earn-v1
https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries
https://github.com/Blueprint-Finance/sc_earn-v1/commit/dd30e9ad47d895d6b71d74ee3f4e6559849091b9
https://github.com/Blueprint-Finance/sc_earn-v1/commit/ccf8d86576ef15b05fead40d74a247e4510b9197
https://github.com/Blueprint-Finance/sc_earn-v1/commit/e3c6a006923197230320e266e586e859f8eca344
https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries/commit/d268ac1f3bf6af752ca33c71288e6dcf124d1918%20https://github.com/Blueprint-Finance/sc_earn-v1/commit/e3c6a006923197230320e266e586e859f8eca344

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

0

HIGH

1

MEDIUM

0

LOW

1

INFORMATIONAL

2

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

INADVERTENT CLEARING OF PROTECTSTRATEGY WHEN
MANAGING STRATEGIES

HIGH SOLVED - 11/13/2024

INCORRECT FEE CALCULATION DUE TO EXCLUSIVE
COMPARISON OPERATORS

LOW SOLVED - 12/04/2024

INCONSISTENT REWARD HARVESTING FLOW INFORMATIONAL SOLVED - 11/08/2024

UNUSED IMPORTS AND ERRORS INFORMATIONAL
PARTIALLY SOLVED -

11/08/2024

7. F I N D I N G S & T EC H D E TA I L S

7.1 I N A DV E RT E N T C L E A R I N G O F P ROT EC TST R AT EGY WH E N

M A N AG I N G ST R AT EG I ES

// HIGH

Description
The MultiStrategyVaultHelpler library is designed to manage multiple strategies, including a special
protectStrategy intended to safeguard assets under specific conditions. The protectStrategy
variable holds the address of the current protect strategy and is critical for the vault's security.
However, due to improper initialization and handling of the protectStrategy variable within the strategy
management functions, specifically addOrReplaceStrategy and removeStrategy, the protectStrategy
can be inadvertently set to address(0) under the following circumstances:

Adding a Non-Protect Strategy: When adding a new non-protect strategy to the vault without
replacing any existing strategies, the protectStrategy may be unintentionally reset to address(0),
even though the protect strategy was not involved in the operation.

functionfunction addOrReplaceStrategyaddOrReplaceStrategy((
 Strategy Strategy[[]] storagestorage strategies strategies,,
 Strategy Strategy memorymemory newStrategy_ newStrategy_,,
 boolbool replace_ replace_,,
 uint256uint256 index_ index_,,
 addressaddress protectStrategy_ protectStrategy_,,
 IERC20 asset IERC20 asset
)) publicpublic returnsreturns ((addressaddress protectStrategy protectStrategy,, IStrategy newStrategyIfc IStrategy newStrategyIfc,, IS IS
 // Calculate total allotments of current strategies// Calculate total allotments of current strategies
 uint256uint256 allotmentTotals allotmentTotals == 00;;
 uint256uint256 len len == strategies strategies..lengthlength;;
 forfor ((uint256uint256 i i == 00;; i i << len len;;)) {{
 allotmentTotals allotmentTotals +=+= strategies strategies[[ii]]..allocationallocation..amountamount;;
 unchecked unchecked {{
 i i++++;;
 }}
 }}

 // Adding or replacing strategy based on `replace_` flag// Adding or replacing strategy based on `replace_` flag
 ifif ((replace_replace_)) {{
 ifif ((index_ index_ >=>= len len)) revertrevert InvalidIndexInvalidIndex((index_index_));;

 // Ensure replacing doesn't exceed total allotment limit// Ensure replacing doesn't exceed total allotment limit
 ifif ((
 allotmentTotals allotmentTotals -- strategies strategies[[index_index_]]..allocationallocation..amount amount ++ ne ne

197197
198198
199199
200200
201201
202202
203203
204204
205205
206206
207207
208208
209209
210210
211211
212212
213213
214214
215215
216216
217217
218218
219219
220220
221221
222

Removing a Non-Protect Strategy: When removing a non-protect strategy from the vault, the
protectStrategy can also be inadvertently reset to address(0), despite the protect strategy remaining
in place.

 >> MAX_BASIS_POINTS MAX_BASIS_POINTS
)) {{
 revertrevert AllotmentTotalTooHighAllotmentTotalTooHigh(());;
 }}

 // Replace the strategy at `index_`// Replace the strategy at `index_`
 stratToBeReplacedIfc stratToBeReplacedIfc == strategies strategies[[index_index_]]..strategystrategy;;
 protectStrategy_ protectStrategy_ == removeStrategyremoveStrategy((stratToBeReplacedIfcstratToBeReplacedIfc,, protect protect

 strategies strategies[[index_index_]] == newStrategy_ newStrategy_;;
 }} elseelse {{
 // Ensure adding new strategy doesn't exceed total allotment li// Ensure adding new strategy doesn't exceed total allotment li
 ifif ((allotmentTotals allotmentTotals ++ newStrategy_ newStrategy_..allocationallocation..amount amount >> MAX_BASI MAX_BASI
 revertrevert AllotmentTotalTooHighAllotmentTotalTooHigh(());;
 }}

 // Add the new strategy to the array// Add the new strategy to the array
 strategies strategies..pushpush((newStrategy_newStrategy_));;
 }}

 // Handle protect strategy assignment if applicable// Handle protect strategy assignment if applicable
 ifif ((newStrategy_newStrategy_..strategystrategy..isProtectStrategyisProtectStrategy(()))) {{
 ifif ((protectStrategy_ protectStrategy_ !=!= addressaddress((00)))) revertrevert MultipleProtectStratMultipleProtectStrat
 protectStrategy protectStrategy == addressaddress((newStrategy_newStrategy_..strategystrategy));;
 }}

 // Approve the asset for the new strategy// Approve the asset for the new strategy
 asset asset..forceApproveforceApprove((addressaddress((newStrategy_newStrategy_..strategystrategy)),, typetype((uint256uint256))..mama

 // Return the address of the new strategy// Return the address of the new strategy
 newStrategyIfc newStrategyIfc == newStrategy_ newStrategy_..strategystrategy;;
}}

222222
223223
224224
225225
226226
227227
228228
229229
230230
231231
232232
233233
234234
235235
236236
237237
238238
239239
240240
241241
242242
243243
244244
245245
246246
247247
248248
249249
250250
251251
252252
253253

functionfunction removeStrategyremoveStrategy((IStrategy stratToBeRemoved_IStrategy stratToBeRemoved_,, addressaddress protectStr protectStr
 publicpublic
 returnsreturns ((addressaddress protectStrategy protectStrategy))
{{
 protectStrategy protectStrategy == protectStrategy_ protectStrategy_;;
 // Check if the strategy has any locked assets that cannot be withd// Check if the strategy has any locked assets that cannot be withd
 ifif ((stratToBeRemoved_stratToBeRemoved_..getAvailableAssetsForWithdrawalgetAvailableAssetsForWithdrawal(()) !=!= stratToB stratToB
 revertrevert StrategyHasLockedAssetsStrategyHasLockedAssets((addressaddress((stratToBeRemoved_stratToBeRemoved_))));;

197197
198198
199199
200200
201201
202202
203203
204204

In both cases, the vault loses its protect strategy without any explicit action taken to remove or replace
it, leading to funds losses.

Proof of Concept
The protect strategy is cleared after setting:

functionfunction test_protectStrategyInadvertentlyClearedtest_protectStrategyInadvertentlyCleared(()) publicpublic {{
 ((ConcreteMultiStrategyVault newVaultConcreteMultiStrategyVault newVault,, Strategy Strategy[[]] memorymemory strats strats)) == _creat_creat

 Strategy Strategy memorymemory unprotectedStrategy unprotectedStrategy == _createMockStrategy_createMockStrategy((IERC20IERC20((addressaddress

 Strategy Strategy memorymemory protectedStrategy protectedStrategy == StrategyStrategy(({{
 strategy strategy:: IStrategyIStrategy((addressaddress((newnew MockERC4626ProtectMockERC4626Protect((IERC20IERC20((addressaddress((asas
 allocation allocation:: AllocationAllocation(({{indexindex:: 00,, amount amount:: 33333333}}))
 }}));;

 //Add a protect strategy//Add a protect strategy
 vm vm..prankprank((adminadmin));;
 newVault newVault..addStrategyaddStrategy((55,, falsefalse,, protectedStrategy protectedStrategy));;

 addressaddress initialProtectStrategy initialProtectStrategy == newVault newVault..protectStrategyprotectStrategy(());;
 assertNotEqassertNotEq((initialProtectStrategyinitialProtectStrategy,, addressaddress((00)),,
 "Protect strategy should not be address(0)""Protect strategy should not be address(0)"
));;

 //Add a non-protect strategy//Add a non-protect strategy
 vm vm..prankprank((adminadmin));;
 newVault newVault..addStrategyaddStrategy((66,, falsefalse,, unprotectedStrategy unprotectedStrategy));;

 }}

 // Redeem all assets from the strategy if it has any assets// Redeem all assets from the strategy if it has any assets
 ifif ((stratToBeRemoved_stratToBeRemoved_..totalAssetstotalAssets(()) >> 00)) {{
 stratToBeRemoved_ stratToBeRemoved_..redeemredeem((stratToBeRemoved_stratToBeRemoved_..balanceOfbalanceOf((addressaddress((thth
 }}

 // Reset protect strategy if the strategy being removed is the prot// Reset protect strategy if the strategy being removed is the prot
 ifif ((protectStrategy_ protectStrategy_ ==== addressaddress((stratToBeRemoved_stratToBeRemoved_)))) {{
 protectStrategy protectStrategy == addressaddress((00));;
 }}

 // Reset allowance to zero for the strategy being removed// Reset allowance to zero for the strategy being removed
 asset asset..forceApproveforceApprove((addressaddress((stratToBeRemoved_stratToBeRemoved_)),, 00));;
}}

205205
206206
207207
208208
209209
210210
211211
212212
213213
214214
215215
216216
217217
218218
219219

 addressaddress protectStrategyAfter protectStrategyAfter == newVault newVault..protectStrategyprotectStrategy(());;
 //Protect strategy should not be address(0) after replacement, indicatin//Protect strategy should not be address(0) after replacement, indicatin
 assertEqassertEq((protectStrategyAfterprotectStrategyAfter,, addressaddress((00))));;
}}

BVSS

AO:A/AC:L/AX:L/C:N/I:N/A:H/D:N/Y:N/R:N/S:U (7.5)

Recommendation
It is recommended to initialize the protectStrategy variable with the current value passed as a
parameter, in both addOrReplaceStrategy and removeStrategy functions.

Remediation

SOLVED: The Concrete team solved the issue in the specified commit id. The protectStrategy variable
was initialized as recommended.

Remediation Hash
https://github.com/Blueprint-Finance/sc_earn-v1/commit/dd30e9ad47d895d6b71d74ee3f4e655984909
1b9

References
Blueprint-Finance/sc_earn-v1/src/libraries/MultiStrategyVaultHelper.sol#L197-L283

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:H/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:H/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:H/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:H/D:N/Y:N/R:N/S:U
https://github.com/Blueprint-Finance/sc_earn-v1/commit/dd30e9ad47d895d6b71d74ee3f4e6559849091b9
https://github.com/Blueprint-Finance/sc_earn-v1/commit/dd30e9ad47d895d6b71d74ee3f4e6559849091b9
https://github.com/Blueprint-Finance/sc_earn-v1/blob/e3c6a006923197230320e266e586e859f8eca344/src/libraries/MultiStrategyVaultHelper.sol#L197-L283

7. 2 I N C O R R EC T F E E CA LC U L AT I O N D U E TO E XC L U S I V E

C O M PA R I S O N O P E R ATO RS

// LOW

Description
The calculateTieredFee function, implemented in the MultiStrategiesVaultHelper, is intended to
compute a tiered performance fee based on the percentage increase of the shareValue over the
highWaterMark. The fee is determined by comparing the calculated difference against predefined fee
tiers specified in fees.performanceFee.

However, due to the use of exclusive comparison operators (< and >) in the tier matching logic, the
function fails to correctly apply fees when the diff is exactly equal to the lowerBound or upperBound of
a tier. This can result in scenarios where no fee is charged when it should be, allowing users to avoid
paying fees by manipulating the shareValue to fall exactly on a tier boundary.

BVSS

functionfunction calculateTieredFeecalculateTieredFee((uint256uint256 shareValue shareValue,, uint256uint256 highWaterMark highWaterMark,,
 publicpublic
 viewview
 returnsreturns ((uint256uint256 fee fee))
{{
 ifif ((shareValue shareValue <=<= highWaterMark highWaterMark)) returnreturn 00;;
 // Calculate the percentage difference (diff) between share value a// Calculate the percentage difference (diff) between share value a
 uint256uint256 diff diff ==
 uint256uint256((shareValueshareValue..mulDivmulDiv((MAX_BASIS_POINTSMAX_BASIS_POINTS,, highWaterMark highWaterMark,, Math Math

 // Loop through performance fee tiers// Loop through performance fee tiers
 uint256uint256 len len == fees fees..performanceFeeperformanceFee..lengthlength;;
 ifif ((len len ==== 00)) returnreturn 00;;
 forfor ((uint256uint256 i i == 00;; i i << len len;;)) {{
 ifif ((diff diff << fees fees..performanceFeeperformanceFee[[ii]]..upperBound upperBound &&&& diff diff >> fees fees..perper
 fee fee == ((((shareValue shareValue -- highWaterMark highWaterMark)) ** totalSupply totalSupply))..mulDivmulDiv((
 fees fees..performanceFeeperformanceFee[[ii]]..feefee,, MAX_BASIS_POINTS MAX_BASIS_POINTS ** 1e181e18,, Ma Ma
));;
 breakbreak;; // Exit loop once the correct tier is found// Exit loop once the correct tier is found
 }}
 unchecked unchecked {{
 i i++++;;
 }}
 }}
}}

141141
142142
143143
144144
145145
146146
147147
148148
149149
150150
151151
152152
153153
154154
155155
156156
157157
158158
159159
160160
161161
162162
163163
164164
165165

AO:A/AC:L/AX:M/C:N/I:N/A:N/D:M/Y:N/R:N/S:U (3.4)

Recommendation
It is recommended to change the comparison operators to inclusive (<= and >=) to ensure that boundary
values are correctly included in the fee calculations.

Remediation

SOLVED: The Concrete team solved the issue in the specified commit id. The recommended comparison
was introduced.

Remediation Hash
https://github.com/Blueprint-Finance/sc_earn-v1/commit/ccf8d86576ef15b05fead40d74a247e4510b9
197

References
Blueprint-Finance/sc_earn-v1/src/libraries/MultiStrategyVaultHelper.sol#L141-L165

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/C:N/I:N/A:N/D:M/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/C:N/I:N/A:N/D:M/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/C:N/I:N/A:N/D:M/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/C:N/I:N/A:N/D:M/Y:N/R:N/S:U
https://github.com/Blueprint-Finance/sc_earn-v1/commit/ccf8d86576ef15b05fead40d74a247e4510b9197
https://github.com/Blueprint-Finance/sc_earn-v1/commit/ccf8d86576ef15b05fead40d74a247e4510b9197
https://github.com/Blueprint-Finance/sc_earn-v1/blob/e3c6a006923197230320e266e586e859f8eca344/src/libraries/MultiStrategyVaultHelper.sol#L141-L165

7. 3 I N C O N S I ST E N T R E WA R D H A RV EST I N G F LOW

// INFORMATIONAL

Description
The _getRewardsToStrategy function in the MorphoVaultStrategy contract is used as the initial step
of the reward harvesting process. This function utilizes the claimRewardsAndSend function from the
MorphoV1Helper library:

The claimRewardsAndSend function decodes the data provided during the reward harvesting flow and
reverts if the decoded owner is not equal to msg.sender:

functionfunction _getRewardsToStrategy_getRewardsToStrategy((bytesbytes memorymemory data data)) internalinternal override override {{
 //TODO check the rewards based on the distributor//TODO check the rewards based on the distributor
 MorphoV1Helper MorphoV1Helper..claimRewardsAndSendclaimRewardsAndSend((addressaddress((00)),, data data,, 11,, truetrue));;
}}

9898
9999
100100
101101

functionfunction claimRewardsAndSendclaimRewardsAndSend((addressaddress owner owner,, bytesbytes memorymemory txDataEncoded txDataEncoded,,
 publicpublic
{{
 ((addressaddress[[]] memorymemory urd urd,, bytesbytes[[]] memorymemory txData txData)) == decodeMorphoV1ProofdecodeMorphoV1Proof
 addressaddress token token;;
 addressaddress account account;;
 uint256uint256 claimable claimable;;
 uint256uint256 claimed claimed;;
 bytes32bytes32[[]] memorymemory proof proof;;
 forfor ((uint256uint256 i i == 00;; i i << urd urd..lengthlength;;)) {{
 ((accountaccount,, token token,, claimable claimable,, proof proof)) == decodeTransactionDataAndPrdecodeTransactionDataAndPr
 ifif ((revertIfReceiverInvalidrevertIfReceiverInvalid)) {{
 ifif ((account account !=!= msg msg..sendersender)) {{
 revertrevert Errors Errors..InvalidMorphoRewardsReceiverInvalidMorphoRewardsReceiver(());;
 }}
 }}
 claimed claimed == IClaimMorphoRewardsIClaimMorphoRewards((urdurd[[ii]]))..claimclaim((accountaccount,, token token,, cla cla
 // SendFundsModality.SEND_THROUGH = SendFundsModality(uint8(0))// SendFundsModality.SEND_THROUGH = SendFundsModality(uint8(0))
 ifif ((mode mode ==== 00)) {{
 ifif ((TokenHelperTokenHelper..attemptSafeTransferattemptSafeTransfer((tokentoken,, owner owner,, claimed claimed,,
 emitemit IClaimMorphoRewards IClaimMorphoRewards..ClaimedRewardsClaimedRewards((tokentoken,, claimed claimed))
 }}
 }}
 unchecked unchecked {{
 i i++++;;
 }}

281281
282282
283283
284284
285285
286286
287287
288288
289289
290290
291291
292292
293293
294294
295295
296296
297297
298298
299299
300300
301301
302302
303303
304304
305305
306306
307307
308

This behavior differs from the reward harvesting logic in other strategies, such as Radian or Silo, which
use a try/catch approach to handle failures and avoid reverting the entire transaction if rewards cannot
be claimed.

BVSS

AO:A/AC:L/AX:M/C:N/I:N/A:L/D:N/Y:N/R:N/S:U (1.7)

Recommendation
It is recommended to refactor the claimRewardsAndSend function and implement a try/catch
mechanism, similar to the other strategies.

Remediation

SOLVED: The Concrete team solved the issue in the specified commit id. The claimRewardsAndSend
function is called with the boolean value set to false, which prevents reverts if the decoded owner
address does not match msg.sender.

Remediation Hash
https://github.com/Blueprint-Finance/sc_earn-v1/commit/e3c6a006923197230320e266e586e859f8eca
344

References
Blueprint-Finance/sc_earn-v1/src/strategies/Morpho/MorphoVaultStrategy.sol#L98-L101
Blueprint-Finance/sc_hub-and-spokes-libraries/src/libraries/MorphoV1Helper.sol#L281-L308

 }}
}}

308308

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/C:N/I:N/A:L/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/C:N/I:N/A:L/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/C:N/I:N/A:L/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/C:N/I:N/A:L/D:N/Y:N/R:N/S:U
https://github.com/Blueprint-Finance/sc_earn-v1/commit/e3c6a006923197230320e266e586e859f8eca344
https://github.com/Blueprint-Finance/sc_earn-v1/commit/e3c6a006923197230320e266e586e859f8eca344
https://github.com/Blueprint-Finance/sc_earn-v1/blob/ecced27196aec89a096eb68c84fda27aa7e95e2f/src/strategies/Morpho/MorphoVaultStrategy.sol#L98-L101
https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries/blob/f9753a2f69851d40b121c005b9ca9fdc29c7f853/src/libraries/MorphoV1Helper.sol#L281-L308

7. 4 U N U S E D I M P O RTS A N D E R RO RS

// INFORMATIONAL

Description
Throughout the code in scope, there are several instances where the imports and errors, are declared but
never used.

In MorphoVaultStrategy.sol:

import {IStrategy, ReturnedRewards} from "../../interfaces/IStrategy.sol";

In TokenHelper.sol:

import {IERC20Metadata} from
"@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";

In StrategyBase.sol:

import {Initializable} from "@openzeppelin/contracts/proxy/utils/Initializable.sol";

In MultiStrategiesVaultHelper.sol:

error InvalidFeeRecipient();
error ERC20ApproveFail();

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation
It is recommended to remove all unused imports.

Remediation

PARTIALLY SOLVED: The Concrete team partially solved the issue in the specified commit id. The unused
imports were removed.

Remediation Hash
https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries/commit/d268ac1f3bf6af752ca33c71
288e6dcf124d1918 https://github.com/Blueprint-Finance/sc_earn-v1/commit/e3c6a006923197230320
e266e586e859f8eca344

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries/commit/d268ac1f3bf6af752ca33c71288e6dcf124d1918%20https://github.com/Blueprint-Finance/sc_earn-v1/commit/e3c6a006923197230320e266e586e859f8eca344
https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries/commit/d268ac1f3bf6af752ca33c71288e6dcf124d1918%20https://github.com/Blueprint-Finance/sc_earn-v1/commit/e3c6a006923197230320e266e586e859f8eca344
https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries/commit/d268ac1f3bf6af752ca33c71288e6dcf124d1918%20https://github.com/Blueprint-Finance/sc_earn-v1/commit/e3c6a006923197230320e266e586e859f8eca344

8 . AU TO M AT E D T EST I N G

S t a t i c A n a l y s i s R e p o r t

D e s c r i p t i o n

Halborn used automated testing techniques to enhance the coverage of certain areas of the scoped
contracts. Among the tools used was Slither, a Solidity static analysis framework. After Halborn verified
all the contracts in the repository and was able to compile them correctly into their ABI and binary
formats, Slither was run on the all-scoped contracts. This tool can statically verify mathematical
relationships between Solidity variables to detect invalid or inconsistent usage of the contracts' APIs
across the entire code-base.

The security team assessed all findings identified by the Slither software and everything was
categorised as false positives.

R e s u l t s

MorphoV1Helper.sol:

TokenHelper.sol:

StrategyBase.sol:

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

