
// Smart Contract Security Assessment 11.11.2024 - 11.22.2024

Morpho V1 Lender
Integration
Concrete

M o r p h o V 1 L e n d e r I n t e g ra t i o n - C o n c r e t e

Prepared by: HALBORN

Last Updated 12/06/2024

Date of Engagement by: November 11th, 2024 - November 22nd, 2024

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS
1 4

CRITICAL
0

HIGH
0

MEDIUM
3

LOW
3

INFORMATIONAL
8

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Improper fallback handling in collateral transfer during foreclosure
7.2 Potential incompatibilities with fee-on-transfer tokens
7.3 Precision loss in changedenominationofprice and related functions
7.4 Potential misuse of non-standard denominations
7.5 Division by zero not prevented
7.6 Unsafe downcasting
7.7 Incomplete natspec documentation
7.8 Multiple typos
7.9 Commented-out code
7.10 Style guide optimizations
7.11 Unused imports, variable, and interface declaration
7.12 Redundant inheritance in morphov1userimpl01
7.13 Lack of event emission
7.14 Magic numbers in use

1 0 0%

8. Automated Testing

1 . I n t r o d u c t i o n

Concrete engaged Halborn to conduct a security assessment of their Morpho V1 Lender Integration
project beginning on November 11th and ending on November 22nd. The security assessment was
scoped to the smart contracts provided in the repositories sc_spokes-v1 and sc_hub-and-spokes-
libraries. Commit hash and further details can be found in the Scope section of this report.

2 . A s s e s s m e n t S u m m a r y

Halborn was provided 1 week for the engagement and assigned one full-time security engineer to review
the security of the smart contract in scope. The engineer is a blockchain and smart contract security
expert with advanced penetration testing and smart contract hacking skills, and deep knowledge of
multiple blockchain protocols.

The purpose of the assessment is to:

Identify potential security issues within the smart contracts.
Ensure that smart contract functionality operates as intended.

In summary, Halborn identified some improvements to reduce the likelihood and impact of risks, which
were mostly addressed by the Concrete team. The main ones are as follows:

Improve fallback handling during collateral transfers.
Mitigate or document potential incompatibilities with fee-on-transfer tokens.
Prevent precision loss in mathematical conversions.
Enforce complete NatSpec documentation.
Ensure division by zero protection.
Remove redundant and unused code.

https://github.com/Blueprint-Finance/sc_spokes-v1
https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries
https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries

3 . Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of manual and automated security testing to balance efficiency,
timeliness, practicality, and accuracy in regard to the scope of this assessment. While manual testing is
recommended to uncover flaws in logic, process, and implementation; automated testing techniques help
enhance coverage of the code and can quickly identify items that do not follow the security best
practices. The following phases and associated tools were used during the assessment:

Research into architecture and purpose.
Smart contract manual code review and walkthrough.
Graphing out functionality and contract logic/connectivity/functions (solgraph).
Manual assessment of use and safety for the critical Solidity variables and functions in scope to

identify any arithmetic related vulnerability classes.
Manual testing by custom scripts.
Static Analysis of security for scoped contract, and imported functions (slither).
Testnet deployment (Foundry).

4 . R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity
Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means
by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

4 .1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory
challenges.

M E T R I C S :

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

M ​E

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4 . 2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

M ​E

E

E = m ​∏ e

M ​I

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4 . 3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

C

r

s

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

C

C = rs

S

S = min(10,EIC ∗ 10)

5 . S C O P E

F ILES AND REPOSITORY

(a) Repository: sc_spokes-v1

(b) Assessed Commit ID: cb9cfb7

(c) Items in scope:

src/userBlueprints/MorphoV1UserImpl01.sol
src/userBlueprints/interfaces/IMorphoV1.sol
src/userBase/utils/ProtectionHandler.sol

Out-of-Scope: Third party dependencies and economic attacks.

F ILES AND REPOSITORY

(a) Repository: sc_hub-and-spokes-libraries

(b) Assessed Commit ID: d268ac1

(c) Items in scope:

src/libraries/OracleLibV1.sol
src/libraries/AddressLib.sol
src/libraries/ProtectionViewLibV1.sol

Out-of-Scope: Third party dependencies and economic attacks.

REMEDIAT ION COMMIT ID :

https://github.com/Blueprint-Finance/sc_spokes-v1
https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries

5b30a9e
933402b
e722bb8
35da7ff
9e39863
f90b68b
b4dad07
5e25658
f88e8aa
f79fd35
8afe14d

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL
0

HIGH
0

MEDIUM
3

LOW
3

INFORMATIONAL
8

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

IMPROPER FALLBACK HANDLING IN COLLATERAL
TRANSFER DURING FORECLOSURE

MEDIUM SOLVED - 11/27/2024

POTENTIAL INCOMPATIBILITIES WITH FEE-ON-TRANSFER
TOKENS

MEDIUM
RISK ACCEPTED -

12/05/2024

PRECISION LOSS IN CHANGEDENOMINATIONOFPRICE AND
RELATED FUNCTIONS

MEDIUM
RISK ACCEPTED -

12/05/2024

POTENTIAL MISUSE OF NON-STANDARD DENOMINATIONS LOW SOLVED - 11/27/2024

DIVISION BY ZERO NOT PREVENTED LOW SOLVED - 11/27/2024

https://github.com/Blueprint-Finance/sc_spokes-v1/commit/5b30a9e4b900af8253f123056449a071d849990c
https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries/commit/933402bd06273adaecc787370ef6ce14e1783b1e
https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries/commit/e722bb8ebf9285b9679f46c0edbea0ac31e3e4a9
https://github.com/Blueprint-Finance/sc_spokes-v1/commit/35da7fff07acd9d3af38180f7147a05a1a9f212b
https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries/commit/9e398634bb3b900cdf3532295b9b00d4864cf8a3
https://github.com/Blueprint-Finance/sc_spokes-v1/commit/f90b68b4d54525f43ee968c39f5afd5382c4db46
https://github.com/Blueprint-Finance/sc_spokes-v1/commit/b4dad077638af4e78ce7368424f5219db3966dd5
https://github.com/Blueprint-Finance/sc_spokes-v1/commit/5e25658241d65093977a925ee478c01156b6edce
https://github.com/Blueprint-Finance/sc_spokes-v1/commit/f88e8aa8e8a406f97608329f4fe697fe2e36347d
https://github.com/Blueprint-Finance/sc_spokes-v1/commit/f79fd3578b4e21b02fb3ad04715f8421d2274aca
https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries/commit/8afe14d35539e8e7bcb432ef159b357b83edf750

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

UNSAFE DOWNCASTING LOW
RISK ACCEPTED -

12/05/2024

INCOMPLETE NATSPEC DOCUMENTATION INFORMATIONAL SOLVED - 12/02/2024

MULTIPLE TYPOS INFORMATIONAL SOLVED - 12/03/2024

COMMENTED-OUT CODE INFORMATIONAL SOLVED - 12/03/2024

STYLE GUIDE OPTIMIZATIONS INFORMATIONAL SOLVED - 12/03/2024

UNUSED IMPORTS, VARIABLE, AND INTERFACE
DECLARATION

INFORMATIONAL SOLVED - 12/03/2024

REDUNDANT INHERITANCE IN MORPHOV1USERIMPL01 INFORMATIONAL SOLVED - 12/03/2024

LACK OF EVENT EMISSION INFORMATIONAL SOLVED - 12/03/2024

MAGIC NUMBERS IN USE INFORMATIONAL SOLVED - 12/03/2024

7. F I N D I N G S & T EC H D E TA I L S

7.1 I M P RO P E R FA L L BAC K H A N D L I N G I N C O L L AT E R A L
T R A N S F E R D U R I N G FO R EC LO S U R E
// MEDIUM

Description
The _executeForeclosure() function in ProtectionHandler is a critical internal function called by the
external executeForecloseByFundsRequester() in UserBaseV1. This function attempts to transfer any
remaining collateral to the owner. If the transfer() call fails, the function attempts to fallback to the
"pull" pattern by increasing the allowance for the owner. However, this fallback mechanism does not
handle scenarios where transfer() fails and does not revert but returns false. In such cases, the
catch block will not execute, leaving the collateral funds trapped in the contract and inaccessible to the
owner.

See the vulnerable code:

try try IERC20IERC20((paramsparams..collateralTokencollateralToken))..transfertransfer((ownerowner,, params params..collateralAmountLecollateralAmountLe
catch catch {{
 IERC20IERC20((paramsparams..collateralTokencollateralToken))..safeIncreaseAllowancesafeIncreaseAllowance((ownerowner,, params params..collatecollate
}}

If IERC20.transfer() does not revert but instead returns false, the catch block will not execute. As a
result, the safeIncreaseAllowance() fallback will not run, and the params.collateralAmountLeft will
remain locked in the contract. This creates a significant issue, especially when interacting with non-
standard ERC20 tokens that do not conform to the expected behavior of transfer().
The failure to handle such edge cases could lead to a situation where the owner cannot retrieve their
collateral, effectively resulting in a loss of funds. Given that this function is part of the foreclosure
process, it is crucial to ensure that all remaining collateral is properly returned to the owner.

BVSS

AO:A/AC:L/AX:L/C:N/I:H/A:H/D:H/Y:H/R:P/S:U (6.6)

Recommendation
To address this issue, the fallback logic should be revised as follows:

1. Use safeTransfer() from OpenZeppelin’s SafeERC20 library instead of IERC20.transfer() for the
initial attempt to transfer the collateral. This guarantees proper execution and reverts on failure,
ensuring the fallback mechanism is triggered as expected.
2. Implement robust fallback logic by retaining the try-catch mechanism and using safeTransfer()
within it. However, in the fallback, explicitly check for any scenarios where safeTransfer() may fail to

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:H/D:H/Y:H/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:H/D:H/Y:H/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:H/D:H/Y:H/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:H/D:H/Y:H/R:P/S:U

execute properly and handle accordingly.
3. Add an event to track fallback allowance usage to enhance transparency and assist in debugging.
Emit an event whenever the fallback safeIncreaseAllowance() is executed, recording the owner and
the amount allowed.

By following these steps, the process of transferring collateral during foreclosure will be more robust,
reliable, and secure, ensuring that funds are either returned directly or made accessible to the owner.

Remediation

SOLVED: The Concrete team fixed this finding in commit 5b30a9e by implementing their own version of
the safeTransfer() function. Notice this new behavior removed the previous intention to give allowance
to the owner by reverting if the attempt to refund fails.

Remediation Hash
https://github.com/Blueprint-Finance/sc_spokes-v1/commit/5b30a9e4b900af8253f123056449a071d84
9990c

https://github.com/Blueprint-Finance/sc_spokes-v1/commit/5b30a9e4b900af8253f123056449a071d849990c
https://github.com/Blueprint-Finance/sc_spokes-v1/commit/5b30a9e4b900af8253f123056449a071d849990c

7. 2 P OT E N T I A L I N C O M PAT I B I L I T I ES WI T H F E E- O N -
T R A N S F E R TO K E N S
// MEDIUM

Description
The _supply() and _withdraw() functions in the MorphoV1UserImpl01 contract do not account for fee-
on-transfer tokens. These tokens deduct a fee during transfers, meaning the amount received or sent
may differ from the user-specified amount parameter. The contract currently assumes that the specified
amount equals the transferred amount, leading to potential inconsistencies and vulnerabilities.

For example, the _supply() function contains the following code:

functionfunction _supply_supply((addressaddress token token,, uint256uint256 amount amount,, uint256uint256 modality modality)) internalinternal oo

 ifif ((mode mode !=!= SendFundsModality SendFundsModality..ONLY_SECOND_STEPONLY_SECOND_STEP)) {{
 // either we send through, or we only do the first step (supply coll// either we send through, or we only do the first step (supply coll
 IERC20IERC20((tokentoken))..safeTransferFromsafeTransferFrom((_owner_owner(()),, addressaddress((thisthis)),, amount amount));;
 }}
 ifif ((mode mode !=!= SendFundsModality SendFundsModality..ONLY_FIRST_STEPONLY_FIRST_STEP)) {{
 // either we send through, or we only do the second step (supply col// either we send through, or we only do the second step (supply col
 MORPHO MORPHO..supplyCollateralsupplyCollateral((_getMarketParams_getMarketParams(()),, amount amount,, addressaddress((thisthis)),, bb
 }}
}}

This function transfers the specified amount from the user and assumes the entire amount is
successfully received, without verifying the actual balance increase.

See also the _withdraw() function:

functionfunction _withdraw_withdraw((addressaddress token token,, uint256uint256 amount amount,, uint256uint256 modality modality)) internalinternal
 // retrieve the mode of sending funds// retrieve the mode of sending funds
 // 0 = protocol -> user, 1 = protocol -> userProxy, 2 = userProxy -> use// 0 = protocol -> user, 1 = protocol -> userProxy, 2 = userProxy -> use
 SendFundsModality mode SendFundsModality mode == SendFundsModalitySendFundsModality((modalitymodality..decodeModedecodeMode(())));;

 amount amount == ((amount amount ==== typetype((uint256uint256))..maxmax)) ?? _getLenderSupplied_getLenderSupplied(()) :: amount amount;;

 ifif ((mode mode !=!= SendFundsModality SendFundsModality..ONLY_SECOND_STEPONLY_SECOND_STEP)) {{
 // either we send through, or we only do the first step (withdraw co// either we send through, or we only do the first step (withdraw co
 MORPHO MORPHO..withdrawCollateralwithdrawCollateral((
 _getMarketParams_getMarketParams(()),,
 amount amount,,
 addressaddress((thisthis)),,
 ((mode mode ==== SendFundsModality SendFundsModality..SEND_THROUGHSEND_THROUGH)) ?? _owner_owner(()) :: addressaddress((thth

));;
 }} elseelse {{
 // Transfer the amount from the contract to the user// Transfer the amount from the contract to the user
 IERC20IERC20((tokentoken))..safeTransfersafeTransfer((_owner_owner(()),, amount amount));;
 }}
}}

This function withdraws the specified amount and assumes the full amount is successfully transferred to
the user, which may not hold true for fee-on-transfer tokens.

BVSS

AO:A/AC:L/AX:L/C:N/I:H/A:H/D:H/Y:H/R:P/S:U (6.6)

Recommendation
To mitigate this issue, implement checks to validate the actual amount transferred during
safeTransfer() and safeTransferFrom() operations. A balance-based approach can help ensure
accurate accounting:

1. Record the Contract Balance:

Before performing the transfer operation, store the current balance of the contract for the relevant
token.

2. Execute the Transfer:

Perform the safeTransfer() or safeTransferFrom() operation.

3. Calculate the Actual Amount:

Subtract the pre-transfer balance from the post-transfer balance to determine the actual amount
received or sent.

Or, alternatively, clearly document that fee-on-transfer tokens are not supported by the protocol,
ensuring users are aware of this limitation.

Remediation

RISK ACCEPTED: The Concrete team indicated that they will not update the code according to the
recommendation, indicating:
If we ever need to integrate with a lender that accepts tokens with fee-on-transfer features, we will
need to create a new user blueprint.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:H/D:H/Y:H/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:H/D:H/Y:H/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:H/D:H/Y:H/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:H/D:H/Y:H/R:P/S:U

7. 3 P R EC I S I O N LO S S I N C H A N G E D E N O M I N AT I O N O F P R I C E
A N D R E L AT E D F U N C T I O N S
// MEDIUM

Description
The changeDenominationOfPrice() function in OracleLibV1, along with related functions such as
convertStandardUnitsToSmallestUnitsPriceQuote() and
convertSmallestUnitsToStandardUnitsPriceQuote(), can experience precision loss during
conversions, particularly when converting between systems with differing decimal scales. Solidity’s
integer arithmetic truncates fractional components, resulting in underrepresented values. While expected
in some cases, this behavior can lead to discrepancies in financial calculations, especially when
conversions are frequent or large.

Notably, the examples in the NatSpec documentation and test files only consider the case where the
oldDenomination is less than the newDenomination. No instances of this function were found in use
across the two codebases within the scope of this security assessment, indicating it may be unused.

///@notice Converts a price quote from one denomination to another///@notice Converts a price quote from one denomination to another
///@param price The price in the old denomination///@param price The price in the old denomination
///@param oldDenomination The old denomination of the price///@param oldDenomination The old denomination of the price
///@param newDenomination The new denomination of the price///@param newDenomination The new denomination of the price
///@return priceNewDenomination The price in the new denomination///@return priceNewDenomination The price in the new denomination
///@dev For example, say we quote the price of WETH in terms of USDC at an a///@dev For example, say we quote the price of WETH in terms of USDC at an a
///@dev Now, converting to another denomination (i.e. accuracy) of 10^18, we///@dev Now, converting to another denomination (i.e. accuracy) of 10^18, we
functionfunction changeDenominationOfPricechangeDenominationOfPrice((uint256uint256 price price,, uint256uint256 oldDenomination oldDenomination,, uu
 internalinternal
 purepure
 returnsreturns ((uint256uint256))
{{
 returnreturn price price..mulDivmulDiv((newDenominationnewDenomination,, oldDenomination oldDenomination));;
}}

Consider the input:

Price: 123456789012345678 (representing 0.123456789012345678 tokens in an 18-decimal system)
Old Denomination: 10^18 (Wei for an 18-decimal token)
New Denomination: 10^6 (micro-units for a 6-decimal token)

Expected Result: The result should ideally be approximately 123456.789012 when scaled down,
preserving the fractional component.
Actual Behavior: Due to Solidity's integer division truncation, the output is 123456, causing a loss of the
fractional part (0.789012).

While this precision loss may seem minor, in financial or trading applications involving large or frequent
transactions, accumulated truncation errors can result in misrepresented values and potential
discrepancies in calculations.

Proof of Concept
The following test case illustrates the problem:

functionfunction test_changeDenominationOfPrice_precisionLosstest_changeDenominationOfPrice_precisionLoss(()) publicpublic {{
 // Set up a number in scale 18// Set up a number in scale 18
 uint256uint256 price price == 123456789012345678123456789012345678;; // A valid number representing token// A valid number representing token
 uint256uint256 oldDenomination oldDenomination == 1010 **** 1818;; // Old denomination (e.g., Wei for a// Old denomination (e.g., Wei for a
 uint256uint256 newDenomination newDenomination == 1010 **** 66;; // New denomination (e.g., micro-unit// New denomination (e.g., micro-unit

 uint256uint256 newPrice newPrice == OracleLibV1 OracleLibV1..changeDenominationOfPricechangeDenominationOfPrice((priceprice,, oldDenom oldDenom

 // Log the actual result for visual confirmation during testing// Log the actual result for visual confirmation during testing
 console console..loglog(("Actual result after scaling down:""Actual result after scaling down:",, newPrice newPrice));;
}}

Run the test using:

forge test forge test ----mp testmp test//OracleLibV1OracleLibV1..tt..sol sol ----mt test_changeDenominationOfPrice_pmt test_changeDenominationOfPrice_p

Observe that the new price is truncated, demonstrating the precision loss.

BVSS

AO:A/AC:L/AX:L/C:N/I:M/A:M/D:L/Y:L/R:P/S:C (4.7)

Recommendation
To mitigate this potential issue, you might consider the following options:

Document the Precision Loss: Clearly indicate in the documentation that precision may be lost when
converting between different decimal systems.

Implement a Rounding Mechanism: Implement a consistent rounding strategy (e.g., rounding up or
down) to manage fractional results more predictably.

Revert on Significant Loss: Include logic that reverts the function if precision loss surpasses a defined
threshold.

Remove the Function: Since the function is currently unused, consider removing it from the codebase
to simplify the library and avoid potential future issues.

Remediation

RISK ACCEPTED: The Concrete team indicated that they will not update the code according to the
recommendation.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:M/D:L/Y:L/R:P/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:M/D:L/Y:L/R:P/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:M/D:L/Y:L/R:P/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:M/D:L/Y:L/R:P/S:C

7. 4 P OT E N T I A L M I S U S E O F N O N - STA N DA R D
D E N O M I N AT I O N S
// LOW

Description
In the OracleLibV1 library, the getDecimalsFromDenomination() function iteratively divides a given
denomination by 10 until it becomes less than 10, counting the number of divisions as the "decimal
places." However, this logic does not verify if the input denomination is a valid power of 10. If a non-
power-of-ten input, such as 999999, is provided, the function will return an incorrect result rather than
reverting.
For example:

Input: 999999
Expected Behavior: Revert or return 0 for invalid denominations.
Actual Behavior: Returns a non-zero value, incorrectly treating 999999 as a valid denomination.

See the affected code:

functionfunction getDecimalsFromDenominationgetDecimalsFromDenomination((uint256uint256 denomination denomination)) internalinternal purepure retret
 uint8uint8 decimals decimals == 00;;
 whilewhile ((denomination denomination >=>= 1010)) {{
 denomination denomination /=/= 1010;;
 decimals decimals++++;;
 }}
 returnreturn decimals decimals;;
}}

Without validation, this function may lead to incorrect assumptions about the validity of the input
denomination, potentially introducing inconsistencies in dependent calculations.

BVSS

AO:A/AC:L/AX:L/C:N/I:M/A:M/D:M/Y:M/R:P/S:U (4.4)

Recommendation
Add validation to ensure the input is a valid power of 10. If not, the function should revert with a clear
error message. For example:

functionfunction getDecimalsFromDenominationgetDecimalsFromDenomination((uint256uint256 denomination denomination)) internalinternal purepure retret
 ifif((denomination denomination ==== 00 |||| denomination denomination %% 1010 !=!= 00)) revertrevert Errors Errors..InvalidDenInvalidDen

 uint8uint8 decimals decimals == 00;;
 whilewhile ((denomination denomination >=>= 1010)) {{
 denomination denomination /=/= 1010;;

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:M/D:M/Y:M/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:M/D:M/Y:M/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:M/D:M/Y:M/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:M/D:M/Y:M/R:P/S:U

 decimals decimals++++;;
 }}
 returnreturn decimals decimals;;
}}

Remediation

SOLVED: The Concrete team fixed this finding in commit 933402b by adding the recommended
validations.

Remediation Hash
https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries/commit/933402bd06273adaecc7873
70ef6ce14e1783b1e

https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries/commit/933402bd06273adaecc787370ef6ce14e1783b1e
https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries/commit/933402bd06273adaecc787370ef6ce14e1783b1e

7. 5 D I V I S I O N BY Z E RO N OT P R EV E N T E D
// LOW

Description
In ProtectionViewLibV1, the functions surpassCriticalLtvAfterWithdraw() and
surpassCriticalLtvAfterBorrow() fail to account for division by zero scenarios, which can cause the
contract to revert unexpectedly. This introduces a risk of denial of service in edge cases, leading to
contract failures during critical calculations.

In surpassCriticalLtvAfterWithdraw():

The currentLtv argument is directly used in a division operation:

uint256uint256 criticalOverCurrentInWad criticalOverCurrentInWad == criticalLtvInWad criticalLtvInWad..mulDivmulDiv((WADWAD,, currentLtv currentLtv))

The priceQuoteDenomination argument is used in a denominator:

withdrawAmountInTokenswithdrawAmountInTokens..mulDivmulDiv((WADWAD,, currentDebtInBorrowTokens currentDebtInBorrowTokens))..mulDivmulDiv((
 priceOfCollateralTokenInBorrowToken priceOfCollateralTokenInBorrowToken,, priceQuoteDenomination priceQuoteDenomination
));;

In surpassCriticalLtvAfterBorrow():

The currentSupplyInCollateral argument is directly used in a denominator:

borrowAmountInTokensborrowAmountInTokens..mulDivmulDiv((WADWAD,, currentSupplyInCollateral currentSupplyInCollateral));;

The priceOfCollateralTokenInBorrowToken argument is also used as a denominator:

mulDivmulDiv((priceQuoteDenominationpriceQuoteDenomination,, priceOfCollateralTokenInBorrowToken priceOfCollateralTokenInBorrowToken));;

If any of these arguments is 0, this will result in a division by zero, reverting the contract.

BVSS

AO:A/AC:L/AX:L/C:N/I:L/A:L/D:N/Y:N/R:N/S:C (3.9)

Recommendation

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:L/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:L/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:L/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:L/D:N/Y:N/R:N/S:C

Introduce validation checks for critical inputs to ensure they are non-zero before performing any division
operations.

Remediation

SOLVED: The Concrete team fixed this finding in commit e722bb8 by Introducing validation checks as
recommended.

Remediation Hash
https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries/commit/e722bb8ebf9285b9679f46c0
edbea0ac31e3e4a9

https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries/commit/e722bb8ebf9285b9679f46c0edbea0ac31e3e4a9
https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries/commit/e722bb8ebf9285b9679f46c0edbea0ac31e3e4a9

7. 6 U N SA F E D OWN CAST I N G
// LOW

Description
In the AddressLib library in scope, direct downcasting is used mainly to convert uint256 values to uint8
or uint160. Unsafe type casting vulnerabilities can occur when the converted value does not fit within
the bounds of the target type, potentially leading to unexpected results or overflow.

The following lines of code show direct castings found in src/libraries/AddressLib.sol:

tokenData tokenData == bytes32bytes32((((uint256uint256((denominationdenomination)) <<<< 160160)) || uint256uint256((uint160uint160((tokentoken))))
......
returnreturn uint8uint8((addressDecimalsData addressDecimalsData >>>> 160160));;
......
returnreturn uint8uint8((addressDecimalsData addressDecimalsData >>>> 248248));;
......
returnreturn bytes32bytes32((((uint256uint256((eideid)) <<<< 160160)) || uint256uint256((uint160uint160((addraddr))))));;
......
returnreturn bytes32bytes32((((number number <<<< 160160)) || uint256uint256((uint160uint160((addraddr))))));;
......
returnreturn addressaddress((uint160uint160((encodedencoded))));;
......
returnreturn addressaddress((uint160uint160((encodedencoded))));;
......
returnreturn uint32uint32((loanId loanId >>>> 160160));;
......
returnreturn uint64uint64((loanId loanId >>>> 192192));;

BVSS

AO:A/AC:L/AX:M/C:N/I:L/A:L/D:N/Y:N/R:N/S:U (2.1)

Recommendation
Consider using OpenZeppelin's SafeCast library to safely downcast integers.

Remediation

RISK ACCEPTED: The Concrete team indicated that they will not update the code according to the
recommendation.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/C:N/I:L/A:L/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/C:N/I:L/A:L/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/C:N/I:L/A:L/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/C:N/I:L/A:L/D:N/Y:N/R:N/S:U

7.7 I N C O M P L E T E N ATS P EC D O C U M E N TAT I O N
// INFORMATIONAL

Description
The MorphoV1UserImpl01.sol and IMorphoV1.sol lack comprehensive NatSpec comments for
functions, state variables, and contracts. NatSpec is a widely adopted standard for documenting Solidity
contracts, providing clear and structured explanations for developers, auditors, and end-users.

BVSS

AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:F/S:U (0.6)

Recommendation
Adopt and implement NatSpec comments across all contracts, functions, and state variables. Use the
following structure as a guideline:

1. Contract-Level Documentation: Include a brief overview of the contract's purpose, scope, and high-
level details. For example:
2. Function-Level Documentation: Document each function using NatSpec annotations, detailing:

@param descriptions for function parameters.
@return descriptions for return values.
@dev notes for developers about implementation details or caveats.
@notice for user-facing descriptions.

3. State Variable Documentation: Document each variable with a concise explanation of its purpose and
usage.
4. Global Guidelines:

Use tools like solhint to enforce NatSpec standards.
Regularly review documentation to ensure alignment with code updates.

By adding NatSpec documentation, the project can improve code clarity, facilitate audits, and enhance
developer and user trust in the protocol.

Remediation

SOLVED: The Concrete team fixed this finding in commit 35da7ff by improving NatSpec comments as
recommended.

Remediation Hash
https://github.com/Blueprint-Finance/sc_spokes-v1/commit/35da7fff07acd9d3af38180f7147a05a1a9f
212b

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:F/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:F/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:F/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:F/S:U
https://github.com/Blueprint-Finance/sc_spokes-v1/commit/35da7fff07acd9d3af38180f7147a05a1a9f212b
https://github.com/Blueprint-Finance/sc_spokes-v1/commit/35da7fff07acd9d3af38180f7147a05a1a9f212b

7. 8 M U LT I P L E T Y P O S
// INFORMATIONAL

Description
Several typographical errors were found in the code and comments throughout the project:

In src/userBlueprints/MorphoV1UserImpl01.sol:

REWARD_QUOTE_GRACE_PRERIODREWARD_QUOTE_GRACE_PRERIOD,,

REWARD_QUOTE_GRACE_PRERIOD should be REWARD_QUOTE_GRACE_PERIOD instead.

In src/userBase/utils/ProtectionHandler.sol:

RepayConcretDebtStructRepayConcretDebtStruct,,
......
RepayConcretDebtStruct RepayConcretDebtStruct memorymemory r r;;

RepayConcretDebtStruct should be RepayConcreteDebtStruct instead.

// and subsequently concrete withdraws its credit injections out fo the lend// and subsequently concrete withdraws its credit injections out fo the lend

out fo the should be out for the instead.

// bookkeeping the withdrawl// bookkeeping the withdrawl

withdrawl should be withdrawal instead.

/// @dev It the repay mode is FromUserWithApproval, the fee is taken from th/// @dev It the repay mode is FromUserWithApproval, the fee is taken from th

sceanrio should be scenario instead.

In src/libraries/AddressLib.sol:

ifif ((number number >> typetype((uint96uint96))..maxmax)) revertrevert Errors Errors..ExceedsUint96MaxPrecissionExceedsUint96MaxPrecission(());;

ExceedsUint96MaxPrecission should be ExceedsUint96MaxPrecision instead.

In src/libraries/ProtectionViewLibV1.sol:

// number of claims is the slot which also keeps the boolen flag// number of claims is the slot which also keeps the boolen flag

boolen should be boolen instead.

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation
To maintain clarity and trustworthiness, it is essential to rectify any typographical errors present within
the contracts. Correcting such errors minimizes the likelihood of confusion and reinforces confidence in
the accuracy and integrity of the documentation.

Remediation

SOLVED: The Concrete team fixed this finding in commits bd53f65 and 9e39863.

Remediation Hash
https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries/commit/9e398634bb3b900cdf35322
95b9b00d4864cf8a3

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://github.com/Blueprint-Finance/sc_spokes-v1/commit/bd53f65d839f2cfa4ff6f55070fc8736dea93fd3
https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries/commit/9e398634bb3b900cdf3532295b9b00d4864cf8a3
https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries/commit/9e398634bb3b900cdf3532295b9b00d4864cf8a3
https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries/commit/9e398634bb3b900cdf3532295b9b00d4864cf8a3

7. 9 C O M M E N T E D - O U T C O D E
// INFORMATIONAL

Description
During the audit, multiple instances of commented-out code were observed throughout the codebase.
While these elements do not inherently introduce security vulnerabilities, they pose certain risks that
should be considered:

1. Codebase Noise and Confusion: Commented-out code can obscure the active logic, making the code
harder to read and maintain. Developers may misinterpret the purpose of such code or assume it is still in
use.
2. Unintentional Execution: If uncommented during future updates, the commented code may introduce
errors or vulnerabilities, especially if it is outdated or incompatible with the current system.
3. Disclosure of Deprecated or Experimental Features: Attackers analyzing the code may infer potential
functionality or weaknesses based on commented-out segments, especially if they reveal experimental or
untested logic.

Examples of commented-out code include:

functionfunction _lenderSpecificAssetValidation_lenderSpecificAssetValidation((addressaddress collateralAsset_ collateralAsset_,, addressaddress bo bo
 internalinternal
 viewview
 overrideoverride((TCustomHooksTCustomHooks))
{{
 ifif ((COLLATERAL_TOKEN_INFOCOLLATERAL_TOKEN_INFO..getAddressgetAddress(()) !=!= collateralAsset_ collateralAsset_)) revertrevert Erro Erro
 ifif ((borrowedAsset_ borrowedAsset_ !=!= addressaddress((00)))) {{
 ifif ((LOAN_TOKEN_INFOLOAN_TOKEN_INFO..getAddressgetAddress(()) !=!= borrowedAsset_ borrowedAsset_)) revertrevert Errors Errors..AsAs
 }}
 // MorphoV1Helper.assetValidation(COLLATERAL_TOKEN_INFO, collateralAsset// MorphoV1Helper.assetValidation(COLLATERAL_TOKEN_INFO, collateralAsset
}}

and:

functionfunction _viewTotalClaimableRewardAmountInBase_viewTotalClaimableRewardAmountInBase(())
 internalinternal
 viewview
 virtual virtual
 overrideoverride((TViewUserPositionTViewUserPosition))
 returnsreturns ((uint256uint256 amount amount,, uint256uint256 denomination denomination))
{{
 // return (0, BASE_DENOMINATION);// return (0, BASE_DENOMINATION);
}}

and:

functionfunction _isOracleQuoteInStandardUnits_isOracleQuoteInStandardUnits(()) internalinternal viewview virtual virtual overrideoverride((TOraTOra
 // AddressLib.getFlag(ORACLE_INFO) == 1;// AddressLib.getFlag(ORACLE_INFO) == 1;
 returnreturn falsefalse;;
}}

and:

functionfunction _getLenderDebt_getLenderDebt(()) internalinternal viewview overrideoverride((TViewUserPositionTViewUserPosition)) returnsreturns
 amount amount == MorphoV1Helper MorphoV1Helper..getLenderDebtgetLenderDebt((MORPHOMORPHO,, _getMarketParams_getMarketParams(())));;
 // amount = MorphoBalancesLib.expectedBorrowAssets(MORPHO, _getMarketPa// amount = MorphoBalancesLib.expectedBorrowAssets(MORPHO, _getMarketPa
}}

and:

functionfunction _repayConcreteDebt_repayConcreteDebt((
 uint256uint256 debt debt,,
 uint256uint256 amountInToken amountInToken,,
 DebtRepayMode repayMode DebtRepayMode repayMode,,
 uint256uint256 feeInToken feeInToken,,
 addressaddress beneficiary beneficiary
)) internalinternal {{
 RepayConcretDebtStruct RepayConcretDebtStruct memorymemory r r;;

 // if (amountInToken > debt) {// if (amountInToken > debt) {
 // // includes amountInToken == type(uint256).max// // includes amountInToken == type(uint256).max
 // amountInToken = debt;// amountInToken = debt;
 // }// }
......

Score

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation
Consider the following recommendations:

1. Eliminate Commented-Out Code: Remove commented-out code that is no longer needed. This reduces
clutter and ensures that the active logic is clear and maintainable.
2. Include Documentation for Retained Comments: If certain sections are retained for reference, include
clear documentation explaining their purpose and whether they are part of plans or deprecated features.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U

3. Resolve ToDo Comments: Ensure all ToDo comments are resolved and removed from the codebase
before deployment. Leaving unfinished work in comments can give attackers insights into incomplete or
untested functionality.
4. Final Review Before Deployment: Conduct a thorough review of the code before deployment to confirm
that all ToDos and commented-out segments are addressed, and the code reflects its intended
deployment state. This helps maintain a clean, readable, and secure codebase.
By addressing these recommendations, the codebase can be kept clean, maintainable, and less prone to
unintended errors or disclosures.

Remediation

SOLVED: The Concrete team fixed this finding in commit f90b68b by removing the commented-out code
as recommended.

Remediation Hash
https://github.com/Blueprint-Finance/sc_spokes-v1/commit/f90b68b4d54525f43ee968c39f5afd5382c4
db46

https://github.com/Blueprint-Finance/sc_spokes-v1/commit/f90b68b4d54525f43ee968c39f5afd5382c4db46
https://github.com/Blueprint-Finance/sc_spokes-v1/commit/f90b68b4d54525f43ee968c39f5afd5382c4db46

7.1 0 ST Y L E G U I D E O P T I M I Z AT I O N S
// INFORMATIONAL

Description
In Solidity development, adhering to the official style guide is best practice to ensure code consistency,
readability, and maintainability. Throughout the contracts, there are several instances where the code
does not follow these guidelines. Some examples include:

The internal variable encodedTotalRewardInBaseAndTimestamp in MorphoV1UserImpl01 does not
begin with an underscore:

uint256uint256 internalinternal encodedTotalRewardInBaseAndTimestamp encodedTotalRewardInBaseAndTimestamp;;

The TreasuryAndRevenueSplit variable in ProtectionHandler is not in mixedCase:

((addressaddress claimRouter claimRouter,, bytes32bytes32 TreasuryAndRevenueSplit TreasuryAndRevenueSplit)) ==
 REMOTE_REGISTRY REMOTE_REGISTRY..getClaimRouterAndEncodedTreasuryAndRevenueSplitInWADgetClaimRouterAndEncodedTreasuryAndRevenueSplitInWAD((falsefalse

Score

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation
Apply the following style guide improvements throughout the codebase:

Internal and private variables and functions names should begin with an underscore:

uint256uint256 internalinternal _encodedTotalRewardInBaseAndTimestamp _encodedTotalRewardInBaseAndTimestamp;;

Variable names should be in mixedCase:

((addressaddress claimRouter claimRouter,, bytes32bytes32 treasuryAndRevenueSplit treasuryAndRevenueSplit)) ==
 REMOTE_REGISTRY REMOTE_REGISTRY..getClaimRouterAndEncodedTreasuryAndRevenueSplitInWADgetClaimRouterAndEncodedTreasuryAndRevenueSplitInWAD((falsefalse

Remediation

SOLVED: The Concrete team fixed this finding in commit b4dad07 by applying the recommended style
improvements.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U

Remediation Hash
https://github.com/Blueprint-Finance/sc_spokes-v1/commit/b4dad077638af4e78ce7368424f5219db39
66dd5

https://github.com/Blueprint-Finance/sc_spokes-v1/commit/b4dad077638af4e78ce7368424f5219db3966dd5
https://github.com/Blueprint-Finance/sc_spokes-v1/commit/b4dad077638af4e78ce7368424f5219db3966dd5

7.1 1 U N U S E D I M P O RTS , VA R I A B L E , A N D I N T E R FAC E
D EC L A R AT I O N
// INFORMATIONAL

Description
During the security assessment of the smart contracts, several instances of unused imports, variables,
and interface declarations were identified. These unnecessary components can clutter the codebase,
reduce readability, and potentially lead to confusion during development or auditing. Additionally, unused
imports may slightly increase the compiled contract's bytecode size, affecting deployment and execution
costs.

Unused Imports:

In MorphoV1UserImpl01.sol:

importimport {{IOracleIOracle}} fromfrom "@morpho-org/morpho-blue/src/interfaces/IOracle.sol""@morpho-org/morpho-blue/src/interfaces/IOracle.sol";;
......
importimport {{MorphoStorageLibMorphoStorageLib}} fromfrom "@morpho-org/morpho-blue/src/libraries/periph"@morpho-org/morpho-blue/src/libraries/periph
......
importimport {{SafeCastSafeCast}} fromfrom "@openzeppelin/contracts/utils/math/SafeCast.sol""@openzeppelin/contracts/utils/math/SafeCast.sol";;
......
importimport {{IERC20MetadataIERC20Metadata}} fromfrom "@openzeppelin/contracts/token/ERC20/extensions"@openzeppelin/contracts/token/ERC20/extensions
......
importimport {{IRewardsMetaHandlerV1IRewardsMetaHandlerV1}} fromfrom "../rewardHandler/interfaces/IRewardsMet"../rewardHandler/interfaces/IRewardsMet
......
importimport {{
 WAD WAD,,
 BP BP,,
 BASE_DENOMINATION BASE_DENOMINATION,,
 MORPHO_ORACLE_DECIMALS MORPHO_ORACLE_DECIMALS,,
 REWARD_QUOTE_GRACE_PRERIOD REWARD_QUOTE_GRACE_PRERIOD,,
 PRICE_QUOTE_STANDARD_UNIT_DENOM PRICE_QUOTE_STANDARD_UNIT_DENOM,,
 PRICE_QUOTE_SMALLEST_UNIT_DENOM PRICE_QUOTE_SMALLEST_UNIT_DENOM
}} fromfrom "../helpers/Constants.sol""../helpers/Constants.sol";;
......
importimport {{TokenTypeTokenType,, SendFundsModality SendFundsModality}} fromfrom "../helpers/DataTypes.sol""../helpers/DataTypes.sol";;

The following imports are not utilized: IOracle, MorphoStorageLib, SafeCast, IERC20Metadata,
IRewardsMetaHandlerV1, WAD, BP, REWARD_QUOTE_GRACE_PRERIOD, and TokenType.

In ProtectionHandler.sol:

importimport {{WADWAD,, BASE_DENOMINATION BASE_DENOMINATION,, FALLBACK_LTV_BUFFER_IN_WAD FALLBACK_LTV_BUFFER_IN_WAD,, MAX_SLIPPAGE_IN_ MAX_SLIPPAGE_IN_

The following constants are not utilized: BASE_DENOMINATION, FALLBACK_LTV_BUFFER_IN_WAD, and
MAX_SLIPPAGE_IN_WAD.

Unused Variable:

In MorphoV1UserImpl01.sol:

uint256uint256 internalinternal encodedTotalRewardInBaseAndTimestamp encodedTotalRewardInBaseAndTimestamp;;

Unused Interface:

In IMorphoV1.sol:

interfaceinterface IClaimMorphoRewardsIClaimMorphoRewards {{

This interface is defined but not referenced anywhere in the codebase.

Unused code increases the attack surface, adds maintenance overhead, and risks being integrated in the
future without proper testing, potentially introducing vulnerabilities or confusion.

Score

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation
To maintain a clean, readable, and secure codebase, consider the following actions:

Remove Unused Imports: Eliminate the unused imports in MorphoV1UserImpl01.sol and
ProtectionHandler.sol. This reduces the codebase's complexity and ensures only relevant
dependencies are present.

Remove Unused Variables: Remove the unused state variable
encodedTotalRewardInBaseAndTimestamp from MorphoV1UserImpl01.sol.

Remove Unused Interface: If IClaimMorphoRewards is not intended for future use, remove it from the
codebase. If it is part of upcoming development, ensure proper documentation of its purpose and test
coverage during implementation.

Remediation

SOLVED: The Concrete team fixed this finding in commit 5e25658 by removing the unused code as
recommended.

Remediation Hash
https://github.com/Blueprint-Finance/sc_spokes-v1/commit/5e25658241d65093977a925ee478c01156
b6edce

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://github.com/Blueprint-Finance/sc_spokes-v1/commit/5e25658241d65093977a925ee478c01156b6edce
https://github.com/Blueprint-Finance/sc_spokes-v1/commit/5e25658241d65093977a925ee478c01156b6edce

7.1 2 R E D U N DA N T I N H E R I TA N C E I N M O R P H OV 1 U S E R I M P L 0 1
// INFORMATIONAL

Description
The MorphoV1UserImpl01 contract includes redundant inheritance, which unnecessarily increases the
complexity of the contract. Specifically, it inherits from Initializable, which is already inherited by
UserBaseV1.

contractcontract MorphoV1UserImpl01MorphoV1UserImpl01 isis IInitializeUserBlueprint IInitializeUserBlueprint,, Initializable Initializable,, Use Use

The UserBaseV1 contract already inherits from Initializable:

abstract abstract contractcontract UserBaseV1UserBaseV1 isis
 Initializable Initializable,,
 IProtocolIntervention IProtocolIntervention,,
 IUserIntervention IUserIntervention,,
 IViewUserState IViewUserState,,
 IReclaimRepayCancel IReclaimRepayCancel,,
 TManagePosition TManagePosition,,
 TViewUserPosition TViewUserPosition,,
 TOracleConnector TOracleConnector,,
 RemoteRegistryConnector RemoteRegistryConnector,,
 FundsRequesterConnector FundsRequesterConnector,,
 SwapperConnector SwapperConnector,,
 ExecutorConnector ExecutorConnector,,
 TokenInfo TokenInfo,,
 ProtectionHandler ProtectionHandler
{{

This creates a redundancy that can complicate contract structure and increase the risk of potential
issues related to Solidity's C3 linearization for resolving multiple inheritance.

Score

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation
To simplify the contract and eliminate potential linearization issues, consider removing the redundant
Initializable inheritance from MorphoV1UserImpl01:

contractcontract MorphoV1UserImpl01MorphoV1UserImpl01 isis IInitializeUserBlueprint IInitializeUserBlueprint,, UserBaseV1 UserBaseV1 {{

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U

Remediation

SOLVED: The Concrete team fixed this finding in commit f88e8aa by removing the redundant inheritance
as recommended.

Remediation Hash
https://github.com/Blueprint-Finance/sc_spokes-v1/commit/f88e8aa8e8a406f97608329f4fe697fe2e36
347d

https://github.com/Blueprint-Finance/sc_spokes-v1/commit/f88e8aa8e8a406f97608329f4fe697fe2e36347d
https://github.com/Blueprint-Finance/sc_spokes-v1/commit/f88e8aa8e8a406f97608329f4fe697fe2e36347d

7.1 3 L AC K O F EV E N T E M I S S I O N
// INFORMATIONAL

Description
It has been observed that some functionalities are missing event emissions. Events are essential for
notifying external observers about critical state changes within a smart contract. They allow transaction
initiators and external monitoring tools to track actions, enhancing transparency and usability.

Failing to emit events can lead to:

Reduced transparency of critical state changes.
Challenges for users and developers in debugging and auditing.
Missed opportunities for off-chain systems to react to state changes effectively.

Examples:

In src/userBlueprints/MorphoV1UserImpl01.sol:

initialize()
supply()
withdraw()
borrow()
repay()

In src/userBase/utils/ProtectionHandler.sol:

_openProtectionPolicy()
_executeForeclosure()
_updateProtectionState()

This list is not exhaustive, and a thorough review of the entire codebase is recommended to identify
additional instances where event emissions can improve transparency and traceability.

Score

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation
All functions updating important parameters should emit events.

Remediation

SOLVED: The Concrete team fixed this finding in commits f79fd35 and b25bb2d by adding events as
recommended.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U

Remediation Hash
https://github.com/Blueprint-Finance/sc_spokes-v1/commit/f79fd3578b4e21b02fb3ad04715f8421d227
4aca

https://github.com/Blueprint-Finance/sc_spokes-v1/commit/f79fd3578b4e21b02fb3ad04715f8421d2274aca
https://github.com/Blueprint-Finance/sc_spokes-v1/commit/f79fd3578b4e21b02fb3ad04715f8421d2274aca

7.1 4 M AG I C N U M B E RS I N U S E
// INFORMATIONAL

Description
In programming, magic numbers refers to the use of unexplained numerical or string values directly in
code, without any clear indication of their purpose or origin. The use of magic numbers can lead to
confusion and make your code more difficult to understand, maintain, and update.

To improve the readability and maintainability of your smart contracts, it is recommended to avoid using
magic numbers and instead use named constants or variables to represent these values. By doing so, you
provide clear context for the values, making it easier for developers to understand their purpose and
significance.

Several examples of magic numbers were found in src/libraries/AddressLib.sol:

tokenData tokenData == bytes32bytes32((((uint256uint256((denominationdenomination)) <<<< 160160)) || uint256uint256((uint160uint160((tokentoken))))
......
returnreturn uint256uint256((tokenData tokenData >>>> 160160));;
......
returnreturn ((uint256uint256((flagflag)) <<<< 248248)) || ((uint256uint256((decimalsdecimals)) <<<< 160160)) || uint256uint256((uint160uint160
......
returnreturn uint8uint8((addressDecimalsData addressDecimalsData >>>> 160160));;
......
returnreturn uint8uint8((addressDecimalsData addressDecimalsData >>>> 248248));;
......
returnreturn bytes32bytes32((((uint256uint256((eideid)) <<<< 160160)) || uint256uint256((uint160uint160((addraddr))))));;
......
returnreturn uint32uint32((uint256uint256((addressEidDataaddressEidData)) >>>> 160160));;
......
returnreturn bytes32bytes32((((number number <<<< 160160)) || uint256uint256((uint160uint160((addraddr))))));;
......
returnreturn uint256uint256((addressNumberData addressNumberData >>>> 160160));;
......
loanId loanId == ((uint256uint256((indexindex)) <<<< 192192)) || ((uint256uint256((chainIdchainId)) <<<< 160160)) || uint256uint256((uint1uint1
......
returnreturn uint32uint32((loanId loanId >>>> 160160));;
......
returnreturn uint64uint64((loanId loanId >>>> 192192));;

This list is not exhaustive, and it is recommended to review the entire codebase to identify additional
instances where magic numbers are used.

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation
To improve code maintainability, readability, and reduce the risk of potential errors, it is recommended to
replace magic numbers with well-defined constants. By using constants, developers can provide clear
and descriptive names for specific values, making the code easier to understand and maintain.
Additionally, updating the values becomes more straightforward, as changes can be made in a single
location, reducing the risk of errors and inconsistencies. For large numbers, consider using scientific
notation (e.g., 1e4).

Remediation

SOLVED: The Concrete team fixed this finding in commit 8afe14d by replacing the magic numbers with
well-defined constants.

Remediation Hash
https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries/commit/8afe14d35539e8e7bcb432ef
159b357b83edf750

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries/commit/8afe14d35539e8e7bcb432ef159b357b83edf750
https://github.com/Blueprint-Finance/sc_hub-and-spokes-libraries/commit/8afe14d35539e8e7bcb432ef159b357b83edf750

8 . AU TO M AT E D T EST I N G

STATIC ANALYSIS REPORT
D e s c r i p t i o n

Halborn used automated testing techniques to enhance the coverage of certain areas of the smart
contracts in scope. Among the tools used was Slither, a Solidity static analysis framework. After Halborn
verified the smart contracts in the repository and was able to compile them correctly into their abis and
binary format, Slither was run against the contracts. This tool can statically verify mathematical
relationships between Solidity variables to detect invalid or inconsistent usage of the contracts' APIs
across the entire code-base.
All issues identified by Slither were proved to be false positives or have been added to the issue list in
this report.

O u t p u t

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

