
// Security Assessment 03.26.2025 - 03.28.2025

Morpho Strategy
(Auto Compounding)
Blueprint Finance

M o r p h o St ra t e g y (Au t o C o m p o u n d i n g) - B l u e p r i n t

F i n a n c e

Prepared by: HALBORN

Last Updated 04/10/2025

Date of Engagement: March 26th, 2025 - March 28th, 2025

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS

4

CRITICAL

0

HIGH

1

MEDIUM

1

LOW

2

INFORMATIONAL

0

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Incorrect slippage protection for token swaps
7.2 Missing token approval in addrewardtoken function
7.3 Inconsistent fee collection due to unverified token transfers
7.4 Missing approval reset in removerewardtoken function

8. Automated Testing

1 0 0%

1 . I N T R O D U C T I O N

Blueprint Finance engaged Halborn to conduct a security assessment on their smart contracts
beginning on March 26th, 2025 and ending on March 28th, 2025. The security assessment was
scoped to the smart contracts provided to the Halborn team.

2. A S S E S S M E N T S U M M A RY

The team at Halborn was provided 3 days for the engagement and assigned a security engineer to
evaluate the security of the smart contract.

The security engineer is a blockchain and smart-contract security expert with advanced penetration
testing, smart-contract hacking, and deep knowledge of multiple blockchain protocols.

The purpose of this assessment is to:

Ensure that smart contract functions operate as intended.
Identify potential security issues with the smart contracts.

In summary, Halborn identified some improvements to reduce the likelihood and impact of risks, which
have been addressed by the Blueprint Finance team . The main ones were the following:

Strengthen slippage handling using oracle-based pricing or by allowing user-
defined thresholds.

Add proper token approval logic to the 'addRewardToken' function to ensure
compatibility and consistency with the initializer.

3. T E S T A P P R O A C H A N D M E T H O D O L O GY

Halborn performed a combination of manual review of the code and automated security testing to
balance efficiency, timeliness, practicality, and accuracy in regard to the scope of the smart contract
assessment. While manual testing is recommended to uncover flaws in logic, process, and
implementation; automated testing techniques help enhance coverage of smart contracts and can
quickly identify items that do not follow security best practices. The following phases and associated
tools were used throughout the term of the assessment:

Research into the architecture, purpose, and use of the platform.
Smart contract manual code review and walkthrough to identify any logic issue.
Thorough assessment of safety and usage of critical Solidity variables and functions in scope

that could lead to arithmetic related vulnerabilities.
Manual testing by custom scripts.
Graphing out functionality and contract logic/connectivity/functions (solgraph).
Static Analysis of security for scoped contract, and imported functions. (Aderyn).
Local or public testnet deployment (Foundry , Remix IDE).ontent goes here.

4. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a
Severity Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring
System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical
means by which vulnerabilities can be exploited and Impact describes the consequences of a
successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as
the number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of
risk to address the most critical issues in a timely manner.

4.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational
cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and
regulatory challenges.

M E T R I C S :

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due
to a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users
only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

M ​E

E

E = m ​∏ e

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

C

r

s

C

C = rs

S

S = min(10,EIC ∗ 10)

SEVERITY SCORE VALUE RANGE

Informational 0 - 1.9

5. S C O P E

F ILES AND REPOSITORY

(a) Repository: sc_earn-v1

(b) Assessed Commit ID: 6b0d0dd

(c) Items in scope:

MorphoVaultStrategy.sol
StrategyBase.sol

Out-of-Scope: concreteMultiStrategyVault.sol, WithdrawalQueueHelper.sol,
MultiStrategyVaultHelper.sol, UniswapV3HelperV1.sol, third party dependencies and economic
attacks. All code modifications not directly related to the scope in this report. (e.g., new
features).

REMEDIAT ION COMMIT ID :

516b7d3
285a57e
55a86d4
69cdaee

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

0

HIGH

1

MEDIUM

1

LOW

2

INFORMATIONAL

0

https://github.com/Blueprint-Finance/sc_earn-v1/pull/153/files#diff-6b0d0dd2136bcd84fd99a056a399f6e417fc8de0f1e67a323be6fdff506674f7

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

INCORRECT SLIPPAGE PROTECTION FOR TOKEN SWAPS HIGH SOLVED - 04/08/2025

MISSING TOKEN APPROVAL IN ADDREWARDTOKEN
FUNCTION

MEDIUM SOLVED - 04/08/2025

INCONSISTENT FEE COLLECTION DUE TO UNVERIFIED
TOKEN TRANSFERS

LOW SOLVED - 04/08/2025

MISSING APPROVAL RESET IN REMOVEREWARDTOKEN
FUNCTION

LOW SOLVED - 04/08/2025

7. F I N D I N G S & T EC H D E TA I L S

7.1 I N C O R R EC T S L I P PAG E P ROT EC T I O N FO R TO K E N

SWA P S

// HIGH

Description

The MorphoVaultStrategy contract implements token swapping functionality that is vulnerable to
sandwich attacks due to incorrect implementation of slippage protection. The issue occurs in the
_swapExactTokenToToken() function where the minimum output amount calculation happens
within the same transaction as the swap execution:

functionfunction _swapExactTokenToToken_swapExactTokenToToken((addressaddress tokenIn tokenIn,, addressaddress tokenOut tokenOut,, uint256uint256 amountIn amountIn,, uint256uint256 minAmountOut minAmountOut))
internalinternal returnsreturns ((uint256uint256 swapAmountOut swapAmountOut))
{{

ifif ((tokenIn tokenIn ==== tokenOut tokenOut |||| amountIn amountIn ==== 00)) {{
returnreturn 00;;

}}
// Approve Uniswap router to spend MORPHO tokens// Approve Uniswap router to spend MORPHO tokens
IERC20IERC20((tokenIntokenIn))..forceApproveforceApprove((uniswapRouteruniswapRouter,, amountIn amountIn));;
ifif ((minAmountOut minAmountOut ==== 00)) {{

 //E @AUDIT compute expected output with quoter//E @AUDIT compute expected output with quoter
uint256uint256 expectedOutput expectedOutput ==
UniswapV3HelperV1UniswapV3HelperV1..getExpectedOutputgetExpectedOutput((IQuoterV2IQuoterV2((uniswapQuoteruniswapQuoter)),, tokenIn tokenIn,, tokenOut tokenOut,, amountIn amountIn,, poolFee poolFee));;
// Calculate minimum output with slippage// Calculate minimum output with slippage
minAmountOut minAmountOut == expectedOutput expectedOutput..mulDivmulDiv((100100_00 _00 -- MAX_SLIPPAGE MAX_SLIPPAGE,, 100100_00_00,, Math Math..RoundingRounding..FloorFloor));;

}}
// Create swap parameters// Create swap parameters
SwapParams SwapParams memorymemory params params == SwapParamsSwapParams(({{

tokenIntokenIn:: tokenIn tokenIn,,
tokenOuttokenOut:: tokenOut tokenOut,,
amountInamountIn:: amountIn amountIn,,
minAmountOutminAmountOut:: minAmountOut minAmountOut,,
poolFeepoolFee:: poolFee poolFee,,
recipientrecipient:: addressaddress((thisthis))

}}));;
// Perform the swap// Perform the swap
try UniswapV3HelperV1try UniswapV3HelperV1..swapExactInputSingleswapExactInputSingle((ISwapRouterISwapRouter((uniswapRouteruniswapRouter)),, params params)) returnsreturns ((uint256uint256 swapAmount swapAmount)) {{

swapAmountOut swapAmountOut == swapAmount swapAmount;;
}} catch catch {{}}
// Reset approval// Reset approval
IERC20IERC20((tokenIntokenIn))..forceApproveforceApprove((uniswapRouteruniswapRouter,, 00));;

}}

The UniswapV3HelperV1 library defines a MAX_SLIPPAGE value but applies this to the quote received
in the same transaction:

uint256uint256 publicpublic constantconstant UNISWAPV3_MAX_SLIPPAGE UNISWAPV3_MAX_SLIPPAGE == 300300;; // 3% slippage// 3% slippage

functionfunction getExpectedOutputgetExpectedOutput((IQuoterV2 quoterV2IQuoterV2 quoterV2,, addressaddress tokenIn tokenIn,, addressaddress tokenOut tokenOut,, uint256uint256 amountIn amountIn,, uint24uint24 poolFee poolFee))
externalexternal
returnsreturns ((uint256uint256 amountOut amountOut))
{{

IQuoterV2IQuoterV2..QuoteExactInputSingleParams QuoteExactInputSingleParams memorymemory quoteExactInputSingleParams quoteExactInputSingleParams == IQuoterV2 IQuoterV2..QuoteExactInputSingleParamsQuoteExactInputSingleParams(({{
tokenIntokenIn:: tokenIn tokenIn,,
tokenOuttokenOut:: tokenOut tokenOut,,
amountInamountIn:: amountIn amountIn,,
feefee:: poolFee poolFee,,
sqrtPriceLimitX96sqrtPriceLimitX96:: 00

}}));;
validateFeeTiervalidateFeeTier((poolFeepoolFee));;

((amountOutamountOut,,,,,,)) == quoterV2 quoterV2..quoteExactInputSinglequoteExactInputSingle((quoteExactInputSingleParamsquoteExactInputSingleParams));;
}}

When the strategy performs swaps (particularly during auto-compounding via
_autoCompoundRewards()), attackers can:

1. Front-run the transaction to manipulate the pool price upward
2. Allow the victim transaction to execute with slippage calculated on the already manipulated price
3. Back-run the transaction to profit from the price difference

This results in direct value extraction from users' rewards and reduces the overall effectiveness of
the yield optimization strategy. The issue is particularly severe because:

1. Auto-compounding operations happen regularly and predictably
2. The reward token (MORPHO) and base asset pair likely has limited liquidity, making price
manipulation easier
3. The cumulative impact increases over time as rewards continually leak value

Proof of Concept
This test can be added to morphoVaultStrategy.t.sol :

functionfunction test_sandwichAttack_vulnerabilitytest_sandwichAttack_vulnerability(()) publicpublic {{
 // Setup: deposit assets and prepare for auto-compounding// Setup: deposit assets and prepare for auto-compounding
 uint256uint256 depositAmount depositAmount == 1010 ether ether;;
 _mintAsset_mintAsset((depositAmountdepositAmount,, hazel hazel));;
 vm vm..prankprank((hazelhazel));;
 asset asset..approveapprove((addressaddress((strategystrategy)),, depositAmount depositAmount));;
 vm vm..prankprank((hazelhazel));;
 strategy strategy..depositdeposit((depositAmountdepositAmount,, hazel hazel));;

 // Fund strategy with MORPHO tokens// Fund strategy with MORPHO tokens
 uint256uint256 morphoAmount morphoAmount == 22 ether ether;;
 dealdeal((addressaddress((morphoTokenmorphoToken)),, addressaddress((strategystrategy)),, morphoAmount morphoAmount));;

 // Enable auto-compounding// Enable auto-compounding
 vm vm..prankprank((configuratorconfigurator));;
 strategy strategy..setAutoCompoundingEnabledsetAutoCompoundingEnabled((truetrue));;
 vm vm..prankprank((configuratorconfigurator));;
 strategy strategy..setMinRewardAmountForCompoundingsetMinRewardAmountForCompounding((0.50.5 ether ether));;

 // Record initial state// Record initial state
 uint256uint256 initialAssets initialAssets == strategy strategy..totalAssetstotalAssets(());;

 // ATTACK SIMULATION// ATTACK SIMULATION
 // 1. Front-run: Manipulate price seen by quoter// 1. Front-run: Manipulate price seen by quoter
 uint256uint256 fairPrice fairPrice == morphoAmount morphoAmount // 100100;; // 0.02 ETH for 2 MORPHO tokens// 0.02 ETH for 2 MORPHO tokens
 uint256uint256 manipulatedPrice manipulatedPrice == fairPrice fairPrice // 22;; // 50% worse price// 50% worse price

 // Mock the quoter to return the manipulated price// Mock the quoter to return the manipulated price
 vm vm..mockCallmockCall((
 UNISWAP_QUOTER UNISWAP_QUOTER,,
 abi abi..encodeWithSelectorencodeWithSelector((IQuoterV2IQuoterV2..quoteExactInputSinglequoteExactInputSingle..selectorselector)),,
 abi abi..encodeencode((manipulatedPricemanipulatedPrice,, 00,, 00,, 00))
));;

 // Mock the approvals// Mock the approvals
 vm vm..mockCallmockCall((
 addressaddress((morphoTokenmorphoToken)),,
 abi abi..encodeWithSelectorencodeWithSelector((IERC20IERC20..approveapprove..selectorselector,, UNISWAP_ROUTER UNISWAP_ROUTER,, morphoAmount morphoAmount)),,
 abi abi..encodeencode((truetrue))
));;

 // Mock the router to return the manipulated price (swapped amount)// Mock the router to return the manipulated price (swapped amount)
 vm vm..mockCallmockCall((
 UNISWAP_ROUTER UNISWAP_ROUTER,,
 abi abi..encodeWithSelectorencodeWithSelector((ISwapRouterISwapRouter..exactInputSingleexactInputSingle..selectorselector)),,
 abi abi..encodeencode((manipulatedPricemanipulatedPrice))
));;

 // Update balances to simulate the swap// Update balances to simulate the swap
 uint256uint256 stratWethBefore stratWethBefore == asset asset..balanceOfbalanceOf((addressaddress((strategystrategy))));;
 dealdeal((WETHWETH,, addressaddress((strategystrategy)),, stratWethBefore stratWethBefore ++ manipulatedPrice manipulatedPrice));;
 dealdeal((addressaddress((morphoTokenmorphoToken)),, addressaddress((strategystrategy)),, 00));;

 // 2. Execute victim transaction// 2. Execute victim transaction
 vm vm..prankprank((compoundercompounder));;
 strategy strategy..compoundRewardscompoundRewards(());;

 // 3. Analyze the attack impact// 3. Analyze the attack impact
 uint256uint256 finalAssets finalAssets == strategy strategy..totalAssetstotalAssets(());;
 uint256uint256 slippageThreshold slippageThreshold == manipulatedPrice manipulatedPrice ** ((1000010000 -- 300300)) // 1000010000;; // 3% slippage on manipulated price// 3% slippage on manipulated price

 console console..loglog(("Initial assets:""Initial assets:",, initialAssets initialAssets));;
 console console..loglog(("Final assets:""Final assets:",, finalAssets finalAssets));;
 console console..loglog(("Fair price:""Fair price:",, fairPrice fairPrice));;
 console console..loglog(("Manipulated price (what the strategy received):""Manipulated price (what the strategy received):",, manipulatedPrice manipulatedPrice));;
 console console..loglog(("Slippage threshold (min acceptable to strategy):""Slippage threshold (min acceptable to strategy):",, slippageThreshold slippageThreshold));;
 console console..loglog(("Loss percentage from attack:""Loss percentage from attack:",, ((((fairPrice fairPrice -- manipulatedPrice manipulatedPrice)) ** 100100)) // fairPrice fairPrice,, "%""%"));;

 // Verify the vulnerability - slippage protection was ineffective// Verify the vulnerability - slippage protection was ineffective
 assertLtassertLt((slippageThresholdslippageThreshold,, fairPrice fairPrice ** 5050 // 100100,, "Slippage protection threshold far too low""Slippage protection threshold far too low"));;
 assertEqassertEq((finalAssets finalAssets -- initialAssets initialAssets,, manipulatedPrice manipulatedPrice,, "Strategy accepted manipulated price""Strategy accepted manipulated price"));;

 // Key point: The slippage protection calculated in _swapExactTokenToToken was based on the // Key point: The slippage protection calculated in _swapExactTokenToToken was based on the
 // already manipulated price, making it ineffective against sandwich attacks// already manipulated price, making it ineffective against sandwich attacks
 console console..loglog(("VULNERABILITY: Slippage was calculated based on already manipulated price!""VULNERABILITY: Slippage was calculated based on already manipulated price!"));;
 console console..loglog(("Slippage threshold is only""Slippage threshold is only",, ((slippageThreshold slippageThreshold ** 100100)) // fairPrice fairPrice,, "% of fair value""% of fair value"));;
 }}

Here are the results:

Ran Ran 11 test test forfor test test//strategiesstrategies//MorphoVaulStrategyMorphoVaulStrategy..tt..solsol::MorphoVaultStrategyTestMorphoVaultStrategyTest
[[PASSPASS]] test_sandwichAttack_vulnerabilitytest_sandwichAttack_vulnerability(()) ((gasgas:: 17084151708415))
LogsLogs::
 Initial assets Initial assets:: 99999999999999999999999999999999999999
 Final assets Final assets:: 1000999999999999999910009999999999999999
 Fair price Fair price:: 2000000000000000020000000000000000
 Manipulated price Manipulated price ((what the strategy receivedwhat the strategy received)):: 1000000000000000010000000000000000
 Slippage threshold Slippage threshold ((min acceptable to strategymin acceptable to strategy)):: 97000000000000009700000000000000
 Loss percentage Loss percentage fromfrom attack attack:: 5050 %%
 VULNERABILITY VULNERABILITY:: Slippage was calculated based on already manipulated price Slippage was calculated based on already manipulated price!!
 Slippage threshold Slippage threshold isis only only 4848 %% of fair value of fair value

Suite resultSuite result:: ok ok.. 11 passed passed;; 00 failed failed;; 00 skipped skipped;; finished in finished in 38.0838.08s s ((32.4832.48s CPU times CPU time))

Ran Ran 11 test suite in test suite in 38.0938.09s s ((38.0838.08s CPU times CPU time)):: 11 tests passed tests passed,, 00 failed failed,, 00 skipped skipped ((11 total tests total tests))

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N (7.5)

Recommendation
It is recommended the following approaches:

1. Allow users to submit minimum amount of shares they want.
2. Use a TWAP from Uniswap or external oracle to determine fair prices.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N

3. Implement a separate function that only estimates swap output without executing the swap.

Remediation Comment

SOLVED: The Blueprint Finance team solved the issue by adding an oracle, checking the quoter price.
Even if for a price feed, the same grace period is used, which is not recommended, the current fix is
good.

Remediation Hash
516b7d3e2310540924ae351b91925dd41b303ee3

7. 2 M I S S I N G TO K E N A P P ROVA L I N A D D R E WA R DTO K E N

F U N C T I O N

// MEDIUM

Description
The addRewardToken function in the StrategyBase.sol contract fails to execute the necessary
token approval, despite a comment indicating this intention.
While the initialization function properly approves tokens, the subsequent method to add new reward
tokens does not:

// In __StrategyBase_init function - proper approval is made// In __StrategyBase_init function - proper approval is made
ifif ((!!rewardTokens_rewardTokens_[[ii]]..tokentoken..approveapprove((addressaddress((thisthis)),, typetype((uint256uint256))..maxmax)))) revertrevert ERC20ApproveFailERC20ApproveFail(());;

// In addRewardToken function - missing approval// In addRewardToken function - missing approval
functionfunction addRewardTokenaddRewardToken((RewardToken RewardToken calldatacalldata rewardToken_ rewardToken_)) externalexternal onlyOwner nonReentrant onlyOwner nonReentrant {{
 // Ensure the reward token address is not zero, not already approved, and its parameters are correctly initialized.// Ensure the reward token address is not zero, not already approved, and its parameters are correctly initialized.
 ifif ((addressaddress((rewardToken_rewardToken_..tokentoken)) ==== addressaddress((00)))) {{
 revertrevert InvalidRewardTokenAddressInvalidRewardTokenAddress(());;
 }}
 ifif ((rewardTokenApprovedrewardTokenApproved[[addressaddress((rewardToken_rewardToken_..tokentoken))]])) {{
 revertrevert RewardTokenAlreadyApprovedRewardTokenAlreadyApproved(());;
 }}
 ifif ((rewardToken_rewardToken_..accumulatedFeeAccounted accumulatedFeeAccounted !=!= 00)) {{
 revertrevert AccumulatedFeeAccountedMustBeZeroAccumulatedFeeAccountedMustBeZero(());;
 }}

 // Add the reward token to the list and approve it for unlimited spending by the strategy.// Add the reward token to the list and approve it for unlimited spending by the strategy.
 rewardTokens rewardTokens..pushpush((rewardToken_rewardToken_));;
 rewardTokenApproved rewardTokenApproved[[addressaddress((rewardToken_rewardToken_..tokentoken))]] == truetrue;;
 // Missing approval call here// Missing approval call here
}}

The function correctly adds the token to the rewardTokens array and sets
rewardTokenApproved[address(rewardToken_.token)] to true, but fails to execute the actual
ERC20 approval that would allow the contract to transfer these tokens.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N (5.0)

Recommendation
It is recommended to modify the addRewardToken function to include the same approval mechanism
present in the initializer function.

Remediation Comment

SOLVED: The Blueprint Finance team solved the issue by adding an approval when adding a token.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N

Remediation Hash
285a57e6377ddefb806654ada3501507023d419d

7. 3 I N C O N S I ST E N T F E E C O L L EC T I O N D U E TO U N V E R I F I E D

TO K E N T R A N S F E RS

// LOW

Description
In the harvestRewards function of the StrategyBase contract, there's a vulnerability related to
how reward token fee transfers are handled. The function uses
TokenHelper.attemptSafeTransfer() with false as the fourth parameter, which means it
doesn't revert on failed transfers but only returns a boolean success indicator:

ifif ((TokenHelperTokenHelper..attemptSafeTransferattemptSafeTransfer((addressaddress((rewardAddressrewardAddress)),, feeRecipient feeRecipient,, collectedFee collectedFee,, falsefalse)))) {{
 rewardTokens rewardTokens[[ii]]..accumulatedFeeAccounted accumulatedFeeAccounted +=+= collectedFee collectedFee;;
 netReward netReward == claimedBalance claimedBalance -- collectedFee collectedFee;;
 emitemit HarvestedHarvested((_vault_vault,, netReward netReward));;
}}

The issue is that the code unconditionally trusts this success indicator without verifying if the actual
amount transferred matches the intended amount. Some tokens might return true even when they
transfer fewer tokens than requested or none at all, especially non-standard ERC20 implementations.

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:M/D:N/Y:N (3.4)

Recommendation
It is recommended to enforce the strict validation of token transfers using
balanceBefore / balanceAfter pattern.

Remediation Comment

SOLVED: The Blueprint Finance team solved the issue by adding the recommended pattern.

Remediation Hash
55a86d4ebd736412e4a919aa0de3a7302b3d593d

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:M/D:N/Y:N

7. 4 M I S S I N G A P P ROVA L R ES E T I N

R E M OV E R E WA R DTO K E N F U N C T I O N

// LOW

Description
The removeRewardToken function in StrategyBase.sol removes tokens from the reward system
but fails to reset the previously granted unlimited token approvals, creating a potential security risk:

functionfunction removeRewardTokenremoveRewardToken((RewardToken RewardToken calldatacalldata rewardToken_ rewardToken_)) externalexternal onlyOwner onlyOwner {{
 // Ensure the reward token is approved before attempting removal.// Ensure the reward token is approved before attempting removal.
 ifif ((!!rewardTokenApprovedrewardTokenApproved[[addressaddress((rewardToken_rewardToken_..tokentoken))]])) {{
 revertrevert RewardTokenNotApprovedRewardTokenNotApproved(());;
 }}

 rewardTokens rewardTokens[[_getIndex_getIndex((addressaddress((rewardToken_rewardToken_..tokentoken))))]] == rewardTokens rewardTokens[[rewardTokensrewardTokens..length length -- 11]];;
 rewardTokens rewardTokens..poppop(());;

 // Mark the reward token as not approved.// Mark the reward token as not approved.
 rewardTokenApproved rewardTokenApproved[[addressaddress((rewardToken_rewardToken_..tokentoken))]] == falsefalse;;
 // Missing approval reset// Missing approval reset
}}

While the function correctly updates the internal tracking state by setting
rewardTokenApproved[address(rewardToken_.token)] to false , it does not reset the actual
ERC20 approval that was previously set to type(uint256).max during either the initialization or
token addition process (if FIND-02 is remediated):

// Approve the strategy to spend the reward token without limit// Approve the strategy to spend the reward token without limit
ifif ((!!rewardTokens_rewardTokens_[[ii]]..tokentoken..approveapprove((addressaddress((thisthis)),, typetype((uint256uint256))..maxmax)))) revertrevert ERC20ApproveFailERC20ApproveFail(());;

This creates a discrepancy between the contract's understanding of its approvals and the actual on-
chain approval state.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (2.5)

Recommendation
It is recommended to reset token approvals to zero when removing a reward token.

Remediation Comment

SOLVED: The Blueprint Finance team solved the issue by removing the approval.

Remediation Hash
69cdaee797e1d00b8c4b5814e8941e5021ef1370

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N

8 . AU TO M AT E D T EST I N G

Halborn used automated testing techniques to enhance the coverage of certain areas of the smart
contracts in scope. Among the tools used was Aderyn , a Solidity static analysis framework.
After Halborn verified the smart contracts in the repository and was able to compile them correctly
into their abis and binary format, Slither was run against the contracts. This tool can statically verify
mathematical relationships between Solidity variables to detect invalid or inconsistent usage of the
contracts' APIs across the entire code-base.

All issues identified by Aderyn were proved to be false positives or have been added to the issue list
in this report.

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or
immediately following any material changes to the codebase, whichever comes first. This approach is crucial for
maintaining the project’s integrity and addressing potential vulnerabilities introduced by code modifications.

