/| Security Assessment 09.02.2024 - 09.20.2024

HUB v1
Blueprint Finance

=/\LL_BLIRIN

HUB v1 - Blueprint Finance

Prepared by: gl HALBORN
Last Updated Unknown date

Date of Engagement: September 2nd, 2024 - September 20th, 2024

Summary

100°% O OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALLFINDINGS CRITICAL HIGH MEDIUM LOW INFORMATIONAL
31 3 1 S S 17

TABLE OF CONTENTS

1. Introduction

2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope

6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Incorrect balance updates in erc721logic and internals
7.2 Lack of access control in pong handlers

7.3 Missing access control in policy termination blueprint
7.4 Incorrect namespace used on boolean commit

7.5 Missing validation for loan owner

7.6 Lack of validation for accesscontrolmanager contract in concretestorage
7.7 Missing check for response handler address

7.8 Missing handling of delete and increment

7.9 Missing operations in config and registry pong handlers.
7.10 Missing name initialization in erc721logic constructor
7.11 Non-atomic packet id may result in collisions

7.12 Missing underflow handling

7.13 Single step ownership transfer process

7.14 Missing validation for consistent chainid and eid

7.15 Lack of configurability in multisigwallet

7.16 Missing use of internal erc721 functions

7.17 Unused config pong handler

7.18 Use of hardcoded values instead of enums

7.19 Inefficient role checking

7.20 Unnecessary immutable namespace variable

7.21 Hardcoded value instead of enum

7.22 Lack of distinction between delete and setting value to O
7.23 Entropy reduction may lead to collisions

7.24 Potential hash collisions in namespace constants due to 4-byte limitation
7.25 Unused function in configmanager

7.26 Unused functions in registrymanager

7.27 Empty packet gap

7.28 Redundant onlyrole modifier

7.29 Inefficient placement of amountsupply check

7.30 Lack of events for state changes

7.31 Ownership assumptions

Concrete engaged our security analysis team to conduct a comprehensive security audit of their smart
contract ecosystem. The primary aim was to meticulously assess the security architecture of the smart
contracts to pinpoint vulnerabilities, evaluate existing security protocols, and offer actionable insights to
bolster security and operational efficacy of their smart contract framework. Our assessment was strictly
confined to the smart contracts provided, ensuring a focused and exhaustive analysis of their security
features.

2. Assessment Summary

Our engagement with Blueprint spanned a 3-week period, during which we dedicated one full-time
security engineer equipped with extensive experience in blockchain security, advanced penetration
testing capabilities, and profound knowledge of various blockchain protocols. The objectives of this
assessment were to:

- Verify the correct functionality of smart contract operations.
- Identify potential security vulnerabilities within the smart contracts.

- Provide recommendations to enhance the security and efficiency of the smart contracts.

In summary, Halborn identified several security concerns that were mostly addressed by the Concrete

team.

3. Test Approach And Methodology

Our testing strategy employed a blend of manual and automated techniques to ensure a thorough
evaluation. While manual testing was pivotal for uncovering logical and implementation flaws, automated
testing offered broad code coverage and rapid identification of common vulnerabilities. The testing
process included:

- A detailed examination of the smart contracts' architecture and intended functionality.
- Comprehensive manual code reviews and walkthroughs.

- Functional and connectivity analysis utilizing tools like Solgraph.

- Customized script-based manual testing and testnet deployment using Foundry.

This executive summary encapsulates the pivotal findings and recommendations from our security
assessment of Blueprint smart contract ecosystem. By addressing the identified issues and
implementing the recommended fixes, Blueprint can significantly boost the security, reliability, and
trustworthiness of its smart contract platform.

4. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity

Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means

by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

41 EXPLOITABILITY

ATTACK ORIGIN [AO).

Captures whether the attack requires compromising a specific account.
ATTACK COST (AC).

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

ATTACK COMPLEXITY (AX]):

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory

challenges.

METRICS:

EXPLOITABILITY METRIC (ME) METRIC VALUE NUMERICAL VALUE

.. Arbitrary (AO:A) 1

Attack Origin (AO) Specific (AO:S) 0.2
Low (AC:L) 1

Attack Cost (AC) Medium (AC:M) 0.67

High (AC:H) 0.33

EXPLOITABILITY METRIC (ME) METRIC VALUE NUMERICAL VALUE

Low (AX:L) 1
Attack Complexity (AX) Medium (AX:M) 0.67
High (AX:H) 0.33

Exploitability F is calculated using the following formula:

E:I_[me

4.2 IMPACT
CONFIDENTIALITY (C):

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

INTEGRITY (I):

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVAILABILITY ([(A):

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

DEPOSIT (D):

Measures the impact to the deposits made to the contract by either users or owners.
YIELD (Y):

Measures the impact to the yield generated by the contract for either users or owners.

METRICS.:
IMPACT METRIC (M) METRIC VALUE NUMERICAL VALUE
None (C:N) 0
Low (C:L) 0.25
Confidentiality (C) Medium (C:M) 0.5
High (C:H) 0.75
Critical (C:C) 1

IMPACT METRIC (M7) METRIC VALUE NUMERICAL VALUE
None (I:N) 0
Low (I:L) 0.25
Integrity (1) Medium (I:M) 0.5
High (I:H) 0.75
Critical (I:C) 1
None (A:N) 0
Low (A:L) 0.25
Availability (A) Medium (A:M) 0.5
High (A:H) 0.75
Critical (A:C) 1
None (D:N) 0
Low (D:L) 0.25
Deposit (D) Medium (D:M) 0.5
High (D:H) 0.75
Critical (D:C) 1
None (Y:N) 0]
Low (Y:L) 0.25
Yield (Y) Medium (Y:M) 0.5
High (Y:H) 0.75
Critical (Y:C) 1

Impact I is calculated using the following formula:

> my — max(my)
4

I = max(my) +

4.3 SEVERITY COEFFICIENT
REVERSIBILITY [R):

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

SCOPE (S):

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

METRICS:
SEVERITY COEFFICIENT (C) COEFFICIENT VALUE NUMERICAL VALUE
None (R:N) 1
Reversibility () Partial (R:P) 0.5
Full (R:F) 0.2
3 (Changed (S:C) 1.25
cope (8) Unchanged (S:U) 1

Severity Coefficient C'is obtained by the following product:

The Vulnerability Severity Score S is obtained by:

The score is rounded up to 1 decimal places.

C =rs

S = min(10, EIC % 10)

SEVERITY

SCORE VALUE RANGE

45-6.9

REPOSITORY

(a) Repository: sc_hub-vi
(b) Assessed Commit ID: 5ff8b67

(c) Items in scope:

src/registry/RegistryManager.sol
src/blueprints/implementations/LenderBlueprint.sol
src/libraries/StorageHandlerLib.sol
src/blueprints/implementations/ProtectionBlueprint.sol
src/token/ERC721LogicContract.sol
src/storage/ConcreteStorage.sol
src/primitives/BasePongHandler.sol
src/blueprints/implementations/PolicyTerminationBlueprint.sol
src/primitives/ERC721 _Internals.sol
src/multiSigWallet/MultiSigWallet.sol
src/blueprints/BaseBlueprint.sol
src/config/ConfigManager.sol

src/errors/Errors.sol
src/primitives/CreateUserBlueprint.sol
src/protocol/Protocol.sol
src/primitives/EnableConcretelLite.sol
src/constants/Tables.sol
src/primitives/PacketldHandler.sol
src/storage/interfaces/IStorageOperations.sol
src/primitives/EVMAddressValidation.sol
src/primitives/GetConcreteLiteEncoding.sol
src/accessControl/AccessControlManager.sol
src/primitives/ValidateProtection.sol
src/registry/RegistryManagerEvents.sol
src/types/Enums.sol
src/primitives/RemoteChainHandler.sol
src/blueprints/BlueprintResolver.sol
src/storage/ConcreteStorageConnector.sol
src/blueprints/implementations/ProtectionBlueprintEvents.sol
src/protocol/PauseStatus.sol
src/registry/interfaces/IRegistryManager.sol
src/primitives/LoanToken_OwnerOf.sol
src/primitives/GetChainEndpoint.sol
src/pongHandler/PongHandleriImplementation.sol
src/constants/Namespaces.sol
src/primitives/GetLoanTokens.sol

https://github.com/Blueprint-Finance/sc_hub-v1

« src/primitives/GetEndpoint.sol

« src/primitives/SetBorrowToken.sol

« src/accessControl/OnlyRole.sol

« src/constants/ProtocolConstants.sol

« src/blueprints/implementations/PolicyTerminationBlueprintEvents.sol
« src/primitives/ERC721_Constructor.sol

« src/types/Structs.sol

« src/multiSigWallet/MultiSigWalletEvents.sol

« src/blueprints/implementations/LenderBlueprintEvents.sol
« src/blueprints/interfaces/IRegistry.sol

« src/storage/interfaces/IConcreteStorage.sol

« src/config/ConfigManagerEvents.sol

« src/storage/ConcreteStorageEvents.sol

« src/protocol/interfaces/IProtocol.sol

« src/blueprints/interfaces/IPongHandler.sol

« src/primitives/ERC721_Events.sol

« src/constants/Roles.sol

« src/accessControl/AccessControlManagerEvents.sol

« src/primitives/BasePongHandlerEvents.sol

« src/config/interfaces/IConfigManager.sol

Out-of-Scope: New features/implementations after the remediation commit IDs.

6. ASSESSMENT SUMMARY & FINDINGS OVERVIEW

CRITICAL HIGH MEDIUM LOW
3 1 S L
INFORMATIONAL
17
SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

INCORRECT BALANCE UPDATES IN ERC721L0GIC AND
INTERNALS

CRITICAL SOLVED - 09/26/2024

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

LACK OF ACCESS CONTROL IN PONG HANDLERS CRITICAL SOLVED - 09/19/2024

MISSING ACCESS CONTROL IN POLICY TERMINATION

CRITICAL SOLVED - 09/19/2024
BLUEPRINT
INCORRECT NAMESPACE USED ON BOOLEAN COMMIT SOLVED - 09/19/2024
MISSING VALIDATION FOR LOAN OWNER MEDIUM RISK ACCEPTED

LACK OF VALIDATION FOR ACCESSCONTROLMANAGER

MEDIUM OLVED - 19/2024
CONTRACT IN CONCRETESTORAGE v S 09/18/

MISSING CHECK FOR RESPONSE HANDLER ADDRESS MEDIUM SOLVED - 09/19/2024

MISSING HANDLING OF DELETE AND INCREMENT MEDIUM RISK ACCEPTED

MISSING OPERATIONS IN CONFIG AND REGISTRY PONG

MEDIUM SOLVED - 09/19/2024
HANDLERS.

MISSING NAME INITIALIZATION IN ERC721LOGIC

SOLVED - 09/19/2024
CONSTRUCTOR

NON-ATOMIC PACKET ID MAY RESULT IN COLLISIONS NOT APPLICABLE

SECURITY ANALYSIS

RISK LEVEL

MISSING UNDERFLOW HANDLING

REMEDIATION DATE

SINGLE STEP OWNERSHIP TRANSFER PROCESS

RISK ACCEPTED

MISSING VALIDATION FOR CONSISTENT CHAINID AND
EID

RISK ACCEPTED

LACK OF CONFIGURABILITY IN MULTISIGWALLET

RISK ACCEPTED

INFORMATIONAL

MISSING USE OF INTERNAL ERC721 FUNCTIONS

INFORMATIONAL

UNUSED CONFIG PONG HANDLER

INFORMATIONAL

USE OF HARDCODED VALUES INSTEAD OF ENUMS

INFORMATIONAL

INEFFICIENT ROLE CHECKING

INFORMATIONAL

UNNECESSARY IMMUTABLE NAMESPACE VARIABLE

INFORMATIONAL

HARDCODED VALUE INSTEAD OF ENUM

INFORMATIONAL

ACKNOWLEDGED

SOLVED - 09/19/2024

SOLVED - 09/19/2024

SOLVED - 09/26/2024

SOLVED - 09/19/2024

SOLVED - 09/26/2024

SOLVED - 09/19/2024

SECURITY ANALYSIS RISK LEVEL

REMEDIATION DATE

LACK OF DISTINCTION BETWEEN DELETE AND SETTING
VALUETO O

INFORMATIONAL

ACKNOWLEDGED

ENTROPY REDUCTION MAY LEAD TO COLLISIONS INFORMATIONAL

ACKNOWLEDGED

POTENTIAL HASH COLLISIONS IN NAMESPACE
CONSTANTS DUE TO 4-BYTE LIMITATION

INFORMATIONAL

UNUSED FUNCTION IN CONFIGMANAGER INFORMATIONAL

UNUSED FUNCTIONS IN REGISTRYMANAGER INFORMATIONAL

EMPTY PACKET GAP INFORMATIONAL

REDUNDANT ONLYROLE MODIFIER INFORMATIONAL

INEFFICIENT PLACEMENT OF AMOUNTSUPPLY CHECK INFORMATIONAL

LACK OF EVENTS FOR STATE CHANGES INFORMATIONAL

ACKNOWLEDGED

SOLVED - 09/19/2024

SOLVED - 09/19/2024

NOT APPLICABLE

SOLVED - 09/19/2024

SOLVED - 09/19/2024

ACKNOWLEDGED

OWNERSHIP ASSUMPTIONS INFORMATIONAL

ACKNOWLEDGED

7. FINDINGS 8 TECH DETAILS

7.1 INCORRECT BALANCE UPDATES IN ERC721LOGIC AND
INTERNALS

/] CRITICAL

Description

The update function in both ERC721LogicContract and ERC721_Internals contracts has a critical
issue in the token balance update logic. Specifically, the balance is not properly updated in storage, as it
only modifies in-memory variables without committing changes to storage using _storage.setUint.
Additionally, the code incorrectly uses the balance key for the from address when attempting to update
the to address balance, causing an inconsistency between ownership and token balances.

This issue results in token transfers that fail to properly decrement the from balance and increment the
to balance, leading to a critical discrepancy in the contract’s accounting of token ownership and
balances. This discrepancy could easily lead to incorrect states where users own tokens, but the
balances remain inaccurate, potentially causing significant issues in the protocol's token accounting and
transfer mechanisms.

Proof of Concept

function test_invalid_balance_erc721() external {
bytes32 tokenld = keccak256(abi.encodePacked("test"));
ERC721Token erc721 = new ERC721Token(tokenld, address(concreteStorage));

vm. prank(ADMIN) ;
accessControlManager.grantRole(bytes4(keccak256("COMMON")), address(erc721));

erc721.mint(USER1, 100);

assertEqCerc721.owner0f(100), USER1);

// ERROR: This will revert as the balance is not updated

// Reason 1 is due to using a memory variable instead of storage

// Reason 2 is due to using “from™ instead of "to" for the second storage.
assertEqCerc721.balanceOf(USERL), 1);

BVSS
AO:A/AC:L/AX:L/C:N/I:C/A:M/D:C/Y:C/R:N/S:C (10.0)

Recommendation

To address this critical issue, the following changes should be made:

1. Ensure storage updates: Modify the update logic to call _storage.setUint to properly update
balances in storage, not just in memory.

2. Correct balance key usage: When updating balances, ensure that the from address balance is
decremented, and the to address balance is incremented by using the correct balance keys for both
addresses. The current implementation mistakenly uses the from address balance key for both, which is
incorrect.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:C/A:M/D:C/Y:C/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:C/A:M/D:C/Y:C/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:C/A:M/D:C/Y:C/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:C/A:M/D:C/Y:C/R:N/S:C

Remediation Comment

SOLVED: The Concrete team solved the issue by removing the ERC721Logic contract.

7.2 LACK OF ACCESS CONTROL IN PONG HANDLERS
/] CRITICAL

Description

The BasePongHandler and PongHandlerImplementation contracts lack proper access control
mechanisms on critical functions like pongHandler, registryPongHandler, and configPongHandler.
These functions can be called by any external address, allowing arbitrary users to commit data into
important namespaces (REGISTRY and COMMON) using any known packetId.

This means an attacker could: - Commit data with a success status when it should not be committed. -
Prevent valid commits by passing an invalid success value. - Clear the ACTIVE_PACKETS_HASHES entry,
causing the packetId to be processed incorrectly, leading to protocol state inconsistencies.

This vulnerability could result in unauthorized modifications of protocol-critical data, impacting the
reliability and security of cross-chain communication or other inter-contract processes.

Proof of Concept

function test_pong_handler() external {
vm. prank(ADMIN) ;
accessControlManager.grantRole(bytes4(keccak256("COMMON_STAGE")), address(pongHandlerImplementati

bytes32 packetld = keccak256(abi.encodePacked("test"));
pongHandlerImplementation.pongHandler(packetId, 0);

BVSS
AO:A/AC:L/AX:L/C:N/I:C/A:C/D:C/Y:C/R:N/S:C (10.0)

Recommendation

Introduce strict access control, ensuring that only authorized addresses (e.g., app chain relayers) are
allowed to call these functions. Implement an onlyRole modifier for these functions, or restrict access
to an account that has validated the remote transaction event status.

Remediation Comment

SOLVED: The Concrete team solved the issue by adding access control. A new role,
PONG_HANDLER_CALLER, has been created and is required to call any pong handler function.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:C/A:C/D:C/Y:C/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:C/A:C/D:C/Y:C/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:C/A:C/D:C/Y:C/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:C/A:C/D:C/Y:C/R:N/S:C

7.3 MISSING ACCESS CONTROL IN POLICY TERMINATION
BLUEPRINT

/] CRITICAL

Description

The functions forecloselLite, forecloseBeforeExpiration, and
reclaimOrForecloseAfterExpiration inthe PolicyTerminationBlueprint contract lack any form
of access control protection. Without proper access control, any entity can call these functions to trigger
foreclosure or reclamation operations on the remote chain for any loan, irrespective of whether they have

the authority to do so.

This vulnerability can lead to several critical issues: - Unauthorized users can trigger foreclosure actions
on loans they do not own. - Malicious actors could modify loan fee values, triggering unintended
consequences across the system. - The protocol could suffer financial losses or inconsistencies by
allowing foreclosure operations without proper checks.

Currently, there are no restrictions that limit who can call these functions, which opens up the system to
exploitation. These functions should either be protected by access control or restricted to loan owners.

BVSS
AO:A/AC:L/AX:L/C:N/I:C/A:C/D:C/Y:C/R:N/S:C (10.0)

Recommendation

1. Implement Access Control: Use role-based access control to limit who can call these sensitive
functions. For instance, restricting these functions to be called only by the BLUEPRINT_CALLER role.

2. Restrict to Loan Owner: Alternatively, the functions should only be callable by the owner of the loan to
prevent unauthorized access. This could be achieved by checking the loan ownership before proceeding.
3. Combining Both Approaches: The protocol can implement both access control and ownership checks
for added security, ensuring only specific roles (like bots) or the loan owner can trigger these actions.

By applying these restrictions, the protocol ensures that only authorized entities can perform sensitive
operations, reducing the risk of malicious exploitation and preserving the integrity of the loan
management system.

Remediation Comment

SOLVED: The Concrete team solved the issue by adding the access control.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:C/A:C/D:C/Y:C/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:C/A:C/D:C/Y:C/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:C/A:C/D:C/Y:C/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:C/A:C/D:C/Y:C/R:N/S:C

7.4 INCORRECT NAMESPACE USED ON BOOLEAN COMMIT
/] HIGH

Description

In the RegistryManager contract, the implementation of the
_commitNewBoolForAddressOnRemoteRegistry function incorrectly uses the
replaceKeyNamespace(BYTES32, key) function when updating the namespace. Since the function
deals with boolean values, it should use the replaceKeyNamespace(BOOL, key) function instead.
Using the wrong namespace can lead to inconsistencies in how the storage is accessed and managed,
potentially causing incorrect data retrieval or unintended behavior in the protocol. This misalignment
between the data type and the namespace could affect how boolean values are stored and accessed,
causing logical errors in the contract.

BVSS
AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:U (7.5)

Recommendation

Update the implementation of _commitNewBoolForAddressOnRemoteRegistry to use the correct
namespace replacement function.

Remediation Comment

SOLVED: The Concrete team solved the issue by removing the function.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:U

7.5 MISSING VALIDATION FOR LOAN OWNER
/] MEDIUM

Description

In the ProtectionBlueprint contract, the function enableConcretelLite does not validate if the
loanId_Owner is set before proceeding. This missing validation could result in sending unnecessary
cross-chain communication (CCCM) messages, which could impact the integrity of both on-chain and off-
chain states. The commented-out lines in the code seem to be intended to perform this validation, but as
it stands, the function can potentially send messages even when loanId_Owner is not set.

Moreover, several other functions within the contract use a loanId parameter but do not check if the
associated loan actually exists. This could lead to unwanted behavior, such as attempting to perform
operations on non-existent loans, affecting the protocol's state integrity.

These missing validations could open the door to unauthorized access, manipulation of loan-related data,
or inconsistencies across the system.

BVSS
AO:A/AC:L/AX:L/C:N/I:C/A:L/D:N/Y:N/R:P/S:C (8.6)

Recommendation

1. Uncomment or add validation for loanId_Owner : Ensure that the loanId_Owner is validated before
proceeding with any logic that sends CCCM messages or modifies state.

2. Check if loan exists in other functions: For any function that takes loanId as a parameter, ensure
that it checks if the loan exists. This can be done by checking if the loan is set in storage or by validating
other key attributes related to the loan.

3. Avoid sending unnecessary CCCM messages: Ensure that CCCM messages are only sent when
necessary and after proper validation checks. This will avoid unnecessary communication and maintain
the integrity of the app chain and any off-chain state.

By enforcing these validations, you can prevent unauthorized loan operations, improve protocol security,
and maintain data consistency across the system.

Remediation Comment

RISK ACCEPTED: The Concrete team accepted the risk of this finding. Checking the concreteLite
status is enough; they do not need to add extra validation. If the loan exists, it should have
concretelLitelInfo.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:C/A:L/D:N/Y:N/R:P/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:C/A:L/D:N/Y:N/R:P/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:C/A:L/D:N/Y:N/R:P/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:C/A:L/D:N/Y:N/R:P/S:C

7.6 LACK OF VALIDATION FOR ACCESSCONTROLMANAGER
CONTRACT IN CONCRETESTORAGE

/] MEDIUM

Description

In the ConcreteStorage contract, during the updateAccessControl function, the provided
accessControlWanagerContract_ is assumed to be a valid AccessControlWManager without any
validation. If a non-conforming contract or an invalid address is provided, the protocol could end up
without a functioning access control manager. This could result in the inability to upgrade contracts,
revoke roles, or control access, leaving the protocol vulnerable to unauthorized actions.

Without proper validation, an attacker or a mistake could set an invalid address, permanently affecting
the ability to manage roles and permissions, effectively locking the protocol or granting unauthorized
access.

BVSS

AO:A/AC:L/AX:L/C:N/I:C/A:N/D:N/Y:N/R:P/S:C (6.3)

Recommendation

Ensure that the accessControlManagerContract_ is a valid AccessControlManager by implementing
a validation check. This can be done through ERC-165 interface detection or by calling a function that
proves the contract conforms to the expected role management behavior. For example, add a require
check:

require(AccessControlManager(accessControlManagerContract_).hasRole(ROLES, accessControlManagerContra
Alternatively, check for the existence of an admin role:

require(AccessControlManager(accessControlManagerContract_).hasRole(ACCESS_CONTROL_ADMIN, accessContr

Either check would ensure that the provided contract has the appropriate roles and adheres to the
expected AccessControlManager contract interface.

Remediation Comment

SOLVED: The Concrete team solved the issue by adding a require condition: if the contract doesn't
have the function, it will revert.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:C/A:N/D:N/Y:N/R:P/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:C/A:N/D:N/Y:N/R:P/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:C/A:N/D:N/Y:N/R:P/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:C/A:N/D:N/Y:N/R:P/S:C

7.7 MISSING CHECK FOR RESPONSE HANDLER ADDRESS
/] MEDIUM

Description

In the BaseBlueprint contract, the _getReponseTemplate function is responsible for fetching the
response handler address from storage. This address is used when sending a cross-chain messaging
(CCCM) response. However, there is no validation to ensure that the address retrieved from storage is not
the zero address (0x0). If an invalid or uninitialized address is used, it can result in the CCCM message
failing to find a valid handler, leading to unexpected behavior or failure to process the message.

Failure to check the validity of this address could result in invalid messages being sent with no recipient
to handle them. This could disrupt the protocol's cross-chain operations, particularly when expecting a
response from another chain.

BVSS
AO:A/AC:L/AX:L/C:N/I:C/A:N/D:N/Y:N/R:P/S:C (6.3)

Recommendation

Add a check in the _getReponseTemplate function to ensure that the response handler address is valid
and not set to 0x0 . If the address is invalid, revert the transaction to prevent sending a faulty CCCM

message.

Remediation Comment

SOLVED: The Concrete team solved the issue by adding an if condition to revert if the returned address is

Zero.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:C/A:N/D:N/Y:N/R:P/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:C/A:N/D:N/Y:N/R:P/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:C/A:N/D:N/Y:N/R:P/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:C/A:N/D:N/Y:N/R:P/S:C

7.8 MISSING HANDLING OF DELETE AND INCREMENT
/] MEDIUM

Description

In the BasePongHandler contract, the _basePongHandler function is responsible for handling various
packet operations. However, it does not handle two critical operations: DELETE_UINT256 and
INCREMENT_UINT256.

o The DELETE_UINT256 operation should result in the deletion of a uint256 value from storage.
Without handling this case, the deletion will not be performed as expected, leaving stale data in the
storage.

o The INCREMENT_UINT256 operation should increment a uint256 value in storage. However,

without handling it, the expected increment does not occur, leading to protocol logic failures where
increments are expected.

Failing to handle these cases could lead to data inconsistencies and incorrect protocol behavior.

BVSS
AQ:A/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:C (6.3)

Recommendation

Add handling for DELETE_UINT256 and INCREMENT_UINT256 operationsin _basePongHandler .

Remediation Comment

RISK ACCEPTED: The Concrete team accepted the risk of this finding. Those instructions do not create a
key in COMMON_STAGE to be committed later; they only create the key with the instruction inside the
packetKeys array. This is because they do not need to “move” any value from stage, we only need to
either set it to O or add 1.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:C

7.9 MISSING OPERATIONS IN CONFIG AND REGISTRY PONG
HANDLERS.

/] MEDIUM

Description

In the BasePongHandler,the _configPongHandler and _registryPongHandler do not handle
instructions for certain data types and operations, including ADDRESS, INCREMENT_UINT256,
AGGREGATE_UINT256 , SUBSTRACT_UINT256, and DELETE_UINT256 . These instructions are fundamental
for managing various types of storage updates across the protocol.

Without proper handling of these instructions, important protocol operations involving address mappings,
numeric aggregations, and incremental updates are either ignored or lead to incorrect storage states.
Specifically: - The ADDRESS type is used to handle data from different chain formats (e.qg., bytes32) and
will play a critical role in future multi-chain compatibility. - For INCREMENT_UINT256
AGGREGATE_UINT256 , and SUBSTRACT_UINT256 , the protocol risks silent failures for aggregation and
arithmetic operations on stored values. - DELETE_UINT256 should either delete or mark the value as
deleted, but no logic currently exists to handle such cases.

The absence of handling for these instructions can lead to security vulnerabilities, inconsistencies, and
protocol failures, especially when managing cross-chain operations or multi-chain compatibility.

BVSS
AO:A/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:C (8.3)

Recommendation

1. Implement missing instruction handling: Update _configPongHandler and _registryPongHandler
to handle the instructions.

2. Address handling: Since ADDRESS is mostly used in the form of bytes32 for future compatibility with
non-EVM chains, ensure that ADDRESS instructions either handle the value correctly or trigger an
appropriate "not implemented" error if this case is yet to be supported.

3. Non-implemented instructions: For any instructions that are intentionally not implemented, add a
revert statement to indicate the lack of support, avoiding silent failures. This could prevent confusion or
exploitation due to unhandled cases.

By implementing these changes, the protocol will ensure proper handling of all critical instructions and
maintain the integrity and security of its storage operations.

Remediation Comment

SOLVED: The Concrete team solved this issue. BasePongHandler has been refactored to account for all
instructions in every function

References

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:C

7.10 MISSING NAME INITIALIZATION IN ERC721LOGIC
CONSTRUCTOR

/] LOW

Description

In the ERC721Logic contract, there is no name or symbol set during the contract initialization. This is
problematic, as ERC-721 tokens usually require a name and symbol to provide clear identification for
users interacting with the contract. Without this, the token may be harder to identify and interact with,
especially through user interfaces or external applications that expect these fields to be set.

The constructor should ideally inherit from the ERC721_Constructor and initialize the token name and
symbol properly using the _erc721_Constructor function, which ensures these fields are correctly set.
Failing to set a name and symbol could result in confusion, particularly for users or other contracts that
rely on these fields for identifying the token.

Proof of Concept

address constant ADMIN = address(0x1337);
ConcreteStorage public concreteStorage;

function setUp() external {
concreteStorage = new ConcreteStorage(ADMIN);
}

function test_no_name_erc721() external {
bytes32 tokenId = keccak256(abi.encodePacked("test"));
ERC721Logic erc721 = new ERC721Logic(tokenId, address(concreteStorage));

console. log(erc721.name());

BVSS
AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:P/S:U (3.8)

Recommendation

Refactor the ERC721Logic contract to inherit from ERC721_Constructor and initialize the name and
symbol during the constructor call. Use the _erc721_Constructor to ensure that these values are set

properly.

Remediation Comment

SOLVED: The Concrete team solved this issue by removing the contract.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:P/S:U

7.1 NON-ATOMIC PACKET ID MAY RESULT IN COLLISIONS
/| LOW

Description

In the PacketIdHandler contract, the endpoint.getPacketId function is used to generate packet IDs,
but it requires manual nonce increment via endpoint.incrementNonce() . If the developer forgets to
call incrementNonce, or if the function fails or is bypassed, it is possible that the same packet ID could
be generated more than once. This would lead to potential packet collisions, where two different
transactions could end up with the same packet ID, resulting in incorrect data being handled by the
contract.

A collision in packet IDs can lead to issues such as overwriting state, mismatched packets, and even
replay attacks, depending on the implementation of the packet handling system.

BVSS
AO:A/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:P/S:U (2.5)

Recommendation

The endpoint.getPacketId function should atomically increment the nonce internally, ensuring that
each call generates a unique packet ID without requiring the developer to manually call
incrementNonce() . This can be achieved by updating the underlying getPacketId function within the
endpoint contract to automatically manage nonce increment.

Remediation Comment

NOT APPLICABLE: The Concrete team marked this as not applicable. They manually increase the nonce
only in case of a hash collision, as we are using only 4 bytes. Either way, the packet is created when the
message is sent in the CCCM. Before that, it's only being fetched. We increase the nonce only in cases of
a bytes4(hash(packetId)) collision.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:P/S:U

7.12 MISSING UNDERFLOW HANDLING
/| LOW

Description

In the BasePongHandler contract, the _basePongHandler function handles the SUBSTRACT_UINT256
operation when the transaction is successful. However, the current implementation does not check if the
value to be subtracted (uintValue) is greater than the value stored in _storage.getUint(key) . Since
uint256 does not allow negative numbers, this can cause an underflow, which would lead to incorrect
values being stored (due to wrapping in Solidity), potentially causing severe inconsistencies in the
protocol.

If the stored value is less than uintValue, the function should either: 1. Revert with a custom error to
prevent the underflow. 2. Set the value to 0, but this can lead to further inconsistencies as the result
does not reflect the actual intent of the operation.

Alternatively, the protocol could consider using signed integers (int256) to handle these cases if
negative values are a valid outcome of the operation.

BVSS
AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:U (2.5)

Recommendation

Add an underflow check to ensure that the stored value is greater than or equal to uintValue before
performing the subtraction. If not, revert the transaction with a custom error.

If the possibility of a negative value is acceptable, consider using int256 instead of uint256 to
prevent such issues.

Remediation Comment

RISK ACCEPTED: The Concrete team accepted the risk of this finding. There should not be a case where it
fails because the value is checked before being sent. However, if it's not, it will result in a failure on the
remote chain, so the success flag will be 0. If that's not the case, the operation will simply revert in the
event of an underflow.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:U

7.13 SINGLE STEP OWNERSHIP TRANSFER PROCESS
/| LOW

Description

It was identified that the ConcreteStorage contract inherited from OpenZeppelin's Ownable library.
Ownership of the contracts that are inherited from the Ownable module can be lost, as the ownership is
transferred in a single-step process. The address that the ownership is changed to should be verified to
be active or willing to act as the owner . Ownable2Step is safer than Ownable for smart contracts
because the owner cannot accidentally transfer smart contract ownership to a mistyped address. Rather
than directly transferring to the new owner, the transfer only completes when the new owner accepts
ownership.

function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(@), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);

by

function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);

BVSS
AO:A/AC:L/AX:L/C:N/I:N/A:M/D:N/Y:N/R:P/S:U (2.5)

Recommendation

Consider using the Ownable2Step https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/access/Ownable2Step.sol library over the Ownable library.

Remediation Comment

RISK ACCEPTED: The Concrete team accepted the risk of this finding.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:M/D:N/Y:N/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:M/D:N/Y:N/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:M/D:N/Y:N/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:M/D:N/Y:N/R:P/S:U
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol

7.14 MISSING VALIDATION FOR CONSISTENT CHAINID AND
EID

/] LOW

Description

In the RegistryManager contract, the function addEndpointIdToChainId is not enforcing validation to
check if chainId_ and eid_ (Endpoint ID) are equal, which is implied as a requirement by other
contract logic. This can cause issues, especially in the context of the function _getRemoteChainEid in
RemoteChainHandler . If a mismatch or incorrect mapping occurs, it could lead to returning invalid or
duplicate addresses for different chain IDs through the _getRemoteChainEidAddress function.
Specifically, if the same eid_ is assigned to multiple chain IDs or if the REMOTE_ENDPOINT_TO_ADDRESS
mapping isn't properly verified before setting values, the protocol could retrieve wrong data, potentially
affecting the functionality across different chains.

BVSS
AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:F/S:C (2.3)

Recommendation

To prevent invalid mappings and ensure that each chain ID corresponds to its own endpoint ID, you
should:

o Add acheckin addEndpointIdToChainId to ensure that chainId_ and eid_ are equal, or at least
enforce a validation logic that guarantees no duplicate endpoint IDs are assigned to multiple chains.

« Before setting or updating the endpoint or chain mappings, ensure that
REMOTE_ENDPOINT_TO_ADDRESS or REMOTE_CHAIN_TO_REGISTRY are properly validated to avoid un-
synced or duplicate mappings.

Remediation Comment

RISK ACCEPTED: The Concrete team accepted the risk of this finding. Names that could cause confusion
were changed. There is a 1-to-n relationship between chainld and eid. Usually, there will be only one eid
per chainld, but the distinction is made in case we want to have more than one deployment per chain. So
we will only have one active eid per chain.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:F/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:F/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:F/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:F/S:C

7.15 LACK OF CONFIGURABILITY IN MULTISIGWALLET
// INFORMATIONAL

Description

The MultiSigWallet contract has a few significant limitations in its current implementation:

1. No way to change _numConfirmationsRequired: The number of confirmations required to execute
a transaction is set during contract construction but cannot be updated afterward. This is problematic
because the initial setting could be too low or too high for the wallet’s evolving needs. Additionally, the

contract allows _numConfirmationsRequired to be set to 1 by default, which effectively bypasses
the multisig functionality, allowing a single owner to execute transactions unilaterally.

2. No quorum enforcement: There is no enforced quorum that requires a minimum percentage of
owners (such as 50%) to confirm a transaction. This can result in decisions being made by a tiny
subset of the owners, undermining the purpose of a multisig wallet.

3. No option to add or remove owners: Once the contract is deployed, the set of owners is immutable.
There is no functionality to add new owners, remove current ones, or handle owner changes
dynamically. This is a critical flaw, as it limits the contract’s ability to adapt to changes, such as a
current owner becoming inactive or new stakeholders joining.

BVSS
AQ:S/AC:L/AX:L/C:N/I:H/A:N/D:H/Y:N/R:N/S:U (1.9)

Recommendation

1. Introduce functionality to change _numConfirmationsRequired : Add a function that allows the
owners to modify the required number of confirmations. This function should have appropriate
safequards, such as requiring approval from a majority of the current owners.

2. Enforce a quorum: Consider implementing a quorum mechanism that requires at least 50% of the
owners to confirm a transaction, regardless of the current _numConfirmationsRequired .

3. Add functions for owner management: Implement functions to allow adding and removing owners,
with appropriate confirmation from the existing owners.

These changes will improve the flexibility, security, and long-term utility of the MultiSigWallet
contract.

Remediation Comment

ACKNOWLEDGED: The Concrete team acknowledged this finding. The current multisig wallet will not be
used, should be out of scope.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:H/A:N/D:H/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:H/A:N/D:H/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:H/A:N/D:H/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:H/A:N/D:H/Y:N/R:N/S:U

7.16 MISSING USE OF INTERNAL ERC721 FUNCTIONS
// INFORMATIONAL

Description

The ERC721Logic contract does not utilize the internal ERC-721 functions available in the
ERC721_Internals contract, such as _erc721_mint, _erc721_update, _erc721_owner0f, and
others. These functions provide crucial functionality for managing token ownership, approvals, and other
standard ERC-721 behaviors. By not using these internal functions, the contract risks inconsistent or
incomplete token management, leading to potential errors or vulnerabilities in how the token operates.
The contract should be leveraging these internal functions to properly handle minting, updating,
ownership verification, approvals, and more, as these are well-tested and designed for reuse in ERC-721
implementations.

BVSS

AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:F/S:U (1.9)

Recommendation

Refactor the ERC721Logic contract to utilize the internal functions from ERC721_Internals to handle
token minting, updating, and other operations. This ensures that the contract adheres to the ERC-721
standard and avoids duplicating logic. Implement the following changes:

o Use _erc721_mint for minting functionality.

o Use _erc721_update for token transfers or updates.

o Use _erc721_owner0f for retrieving token ownership.

o Use _erc721_isApprovedForAll for checking operator approvals.

o Use _erc721_isAuthorized for checking whether a user is authorized for specific token operations.
o Use _erc721_getApproved for retrieving token-specific approvals.

o Use _erc721_checkAuthorized to verify authorization for token operations.

o Use _erc721_approve for approving token transfers.

o Use _erc721_requireOwned to check token ownership internally.

Additionally, expose an internal _mint function that utilizes _erc721_mint to enable proper token
minting.

Remediation Comment

SOLVED: The Concrete team solved this issue by removing the use of this contract, keeping only the
ownerOf function.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:F/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:F/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:F/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:F/S:U

7.17 UNUSED CONFIG PONG HANDLER
// INFORMATIONAL

Description

The configPongHandler function is currently implemented but not used anywhere in the code. The
ConfigManager contract is using the registryPongHandler selector to handle configuration updates
instead of the configPongHandler . As a result, there is unnecessary duplication of logic, and the
presence of an unused function increases the contract size and complexity without adding value.
Additionally, both configPongHandler and registryPongHandler have identical logic. Maintaining
unused and redundant code increases the risk of maintenance errors and makes the codebase harder to

audit and manage.

BVSS
AO:S/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:C (1.9)

Recommendation

Either:

1. Use the configPongHandler in the ConfigManager :If configPongHandler was intended to handle
configuration updates specifically, modify the ConfigManager to use this selector rather than
registryPongHandler . This will ensure that the contract logic is clearly separated and adheres to its
intended design.

2. Remove the configPongHandler entirely: If no distinction is necessary between configuration and
registry updates, you can simplify the code by removing configPongHandler from the contracts. This
will reduce contract size and improve maintainability.

Remediation Comment

SOLVED: The Concrete team solved this issue. The configPongHandler is being used on the
ConfigManager and the registryPongHandler function on the RegistryManager.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:C

7.18 USE OF HARDCODED VALUES INSTEAD OF ENUMS
// INFORMATIONAL

Description

In the EVMAddressValidation contract, the _evmAddressValidation function checks the
tokenConfig_ by comparing values using uint numbers, specifically _storage.getUint(key) < 3 to
ensure that a token is not blacklisted. However, this approach relies on magic numbers, which makes the
code less readable and prone to errors when interpreting the various token configurations.

The system is already using an enum called TokenConfig with different states such as
AvailablewWithNoProtection, AvailableForConcreteLite, AvailableForProtection, and
Blacklisted . Using the enum directly instead of magic numbers improves code clarity, maintainability,
and reduces the chance of misinterpretation when developers work with the code or modify it.

BVSS
AO:S/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:U (1.5)

Recommendation

Refactor the comparison of the tokenConfig_ to use the TokenConfig enum instead of comparing
with raw integer values. This will provide better readability and ensure that future updates are more
manageable.

if (_storage.getUint(key) != uint256(TokenConfig.Blacklisted)) {
// logic
ks

By referencing the enum, the code becomes self-explanatory, reducing the chance of misinterpreting
what each value represents and ensuring that the logic remains clear across the protocol. Ensure all
instances where tokenConfig_ values are checked across the protocol use the enum rather than magic
numbers.

Remediation Comment

SOLVED: The Concrete team solved this issue. All instances of the TokenConfig are now using the enum

values.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:U

7.19 INEFFICIENT ROLE CHECKING
// INFORMATIONAL

Description

The hasRole function in the AccessControlManager contract currently relies on fetching the
rolesVersion externally from the storage and then checking if the role is set using
_storage.getBool. This results in two external calls to the storage: one to retrieve the rolesVersion
and another to check if the role exists. This introduces unnecessary gas costs due to the repeated calls

to the storage layer.

By using _storage.hasRole directly, the function can efficiently check for the role in a single call, as

this method internally fetches the rolesVersion and checks the storage, optimizing gas consumption.

BVSS
AQ:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:C (1.3)

Recommendation

Refactor the hasRole function to call _storage.hasRole directly instead of making two separate
external storage calls. This will reduce gas costs and simplify the logic.

Remediation Comment

SOLVED: The Concrete team solved this issue. Refactored the hasRole function to call
_storage.hasRole directly instead of making two separate external storage calls.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:C

7.20 UNNECESSARY IMMUTABLE NAMESPACE VARIABLE
// INFORMATIONAL

Description

The ERC721Logic contract currently uses the StorageConnectorWithNamespace contract, which
includes an immutable NAMESPACE variable. However, ERC721Logic does not leverage the immutable
NAMESPACE variable efficiently, leading to unnecessary gas costs due to the inclusion of additional logic
and storage that may not be required for this particular implementation.

Since ERC721Logic does not utilize multiple namespaces and staging logic, the usage of
StorageConnectorPrimitive, which omits the namespace logic, would result in reduced deployment
costs by simplifying the contract structure and eliminating unnecessary storage.

BVSS
AO:S/AC:L/AX:L/C:N/I:M/A:L/D:N/Y:N/R:N/S:U (1.1)

Recommendation

Refactor ERC721Logic to inherit from StorageConnectorPrimitive instead of
StorageConnectorWithNamespace . This will reduce deployment costs by avoiding the additional logic
related to the immutable NAMESPACE variable, which is not necessary for this use case.

Remediation Comment

SOLVED: The Concrete team solved this issue by removing the ERC721Logic contract.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:L/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:L/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:L/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:L/D:N/Y:N/R:N/S:U

7.21 HARDCODED VALUE INSTEAD OF ENUM
// INFORMATIONAL

Description

In the LenderBlueprint contract, the _initialSupplyPrimitive function, which internally calls
_evmAddressValidation, uses a hardcoded value of 1 to represent a token configuration. This is
meant to indicate the AvailableForConcreteLite configuration but lacks clarity and could lead to
misinterpretations in future code changes.

Using hardcoded values decreases code readability and maintainability, making it difficult for developers
to understand what the 1 value represents. This can also introduce potential errors if the enum values
change in the future or if a developer misinterprets the hardcoded value.

BVSS
AO:S/AC:L/AX:L/C:N/I:M/A:N/D:L/Y:N/R:N/S:U (1.1)

Recommendation

Replace the hardcoded value 1 with the TokenConfig.AvailableForConcreteLite enum to enhance
readability and maintainability. This will also make the code less error-prone, as the enum provides a
more explicit representation of the token configuration.

Remediation Comment

SOLVED: The Concrete team solved this issue. Magic numbers have been replaced by the corresponding
enums.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:L/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:L/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:L/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:L/Y:N/R:N/S:U

7.22 LACK OF DISTINCTION BETWEEN DELETE AND SETTING
VALUETO O

// INFORMATIONAL

Description

The DELETE_UINT256 operationin the _basePongHandler function simply deletes a uint256 value
from storage, which effectively has the same outcome as setting the value to 0. This can lead to
ambiguity in the protocol, as there is no way to distinguish between a deleted value and a value that was
intentionally set to 0. Without a clear distinction, it could cause issues in other parts of the protocol that
expect a deleted value to behave differently from a zeroed value.

For example, in certain financial applications, a value of O could mean "no debt" or "no funds," while a
deleted value might indicate that the entity no longer exists or that the record is invalid. Without a
mechanism to indicate the value was deleted, it could lead to incorrect assumptions or logic failures.

BVSS
AO:S/AC:L/AX:L/C:N/I:M/A:L/D:N/Y:N/R:N/S:U (1.1)

Recommendation

Consider introducing a flag to indicate that the value was deleted and is no longer valid. This flag could
be stored in a separate boolean variable in storage to mark the deletion status.

This way, the protocol can differentiate between values that are intentionally set to 0 and values that
have been deleted. This ensures more robust logic and avoids unintended behavior when handling deleted
entries.

If a 0 value is preferred, the protocol should always check for it during its logic.

Remediation Comment

ACKNOWLEDGED: The Concrete team acknowledged this finding. There is a distinction: DELETE is an
optimization because it does not require reading a key from a stage to determine which value to set. It
will always set the value to zero, so it saves us from reading from storage.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:L/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:L/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:L/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:L/D:N/Y:N/R:N/S:U

7.23 ENTROPY REDUCTION MAY LEAD TO COLLISIONS
// INFORMATIONAL

Description

The StorageHandlerLib contract uses the _createKey function to generate unique keys by combining
a namespace and a truncated hash, pointerPlusIdHash. The pointerPlusIdHash is reduced from
256 bits to 192 bits by shifting 64 bits to leave space for a potential packetId in the
_createKeyWithPacketId function. While this approach helps accommodate packet IDs, it reduces the
entropy of pointerPlusIdHash, which could increase the chance of hash collisions.

Despite the reduced entropy, collisions are still improbable because the pointerPlusIdHash is always
derived from hashed data. However, the reduced entropy may still introduce risk in high-collision
probability scenarios, such as when dealing with a large number of unique entries in the storage.

BVSS
AQ:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U (1.0)

Recommendation

Consider using the full 256-bit hash for pointerPlusIdHash to preserve the full entropy and mitigate
any potential risks of hash collisions. If a reduction is necessary to support packet IDs, implement
additional mechanisms to detect or mitigate collisions, such as pre-checking for existing keys in the
storage system before assigning a new one.

Remediation Comment

ACKNOWLEDGED: The Concrete team acknowledged this issue. Addresses are 20 bytes, and there is not a
concern about collisions. To construct the keys, it is also used the first 4 bytes of the NAMESPACE, which
further reduces the chance of collisions.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U

7.24 POTENTIAL HASH COLLISIONS IN NAMESPACE
CONSTANTS DUETO 4-BYTE LIMITATION

// INFORMATIONAL

Description

In the Namespaces contract, only the first 4 bytes of the hash are being used to define namespaces
(e.g., bytes4 constant ROLES = bytes4(keccak256("ROLES"));). This truncation significantly
increases the likelihood of hash collisions since only 4 bytes (32 bits) are used to distinguish between
different namespaces. As more namespaces or data types are added in the future, the probability of
collisions increases, potentially leading to namespace overlap, which may cause unexpected behavior or
vulnerabilities in the system.

BVSS
AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U (1.0)

Recommendation

It is essential to check for potential hash collisions before adding new namespaces. This can be done by
manually verifying the first 4 bytes of the hash value when defining new namespaces. Including the
calculated hex values in the natspec or as comments for each namespace will help ensure that no
accidental collisions occur. For example:

/// @dev ROLES namespace (first 4 bytes: 0x5b5298e6)
bytes4 constant ROLES = bytes4(keccak256("ROLES"));

/// @dev COMMON namespace (first 4 bytes: @xaabbccdd)
bytes4 constant COMMON = bytes4(keccak256("COMMON"));

This practice will provide a simple way to verify and avoid future hash collisions when adding new
namespaces.

Remediation Comment

ACKNOWLEDGED: The Concrete team acknowledged this issue. Function signatures use the first 4 bytes,
and there are likely more chances of having multiple function signatures in a single contract than there
are namespaces in the entire system.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U

7.25 UNUSED FUNCTION IN CONFIGMANAGER
// INFORMATIONAL

Description

The ConfigManager contract contains a private function named _commitNewUintForRemoteRegistry,
which is currently not being used anywhere in the contract. Unused functions not only increase
deployment costs but can also confuse developers and auditors, making it harder to maintain or audit the
codebase.

Unused code, especially functions, can lead to unnecessary complexity and potential attack vectors if
not properly managed.

BVSS
AQ:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U (1.0)

Recommendation

Remove the _commitNewUintForRemoteRegistry function if it is not required in the contract. If the
function is intended for future use, consider commenting it out or explaining its purpose in the code
comments to avoid confusion.

Remediation Comment

SOLVED: The Concrete team solved this issue by removing unused functions.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U

7.26 UNUSED FUNCTIONS IN REGISTRYMANAGER
// INFORMATIONAL

Description
In the RegistryManager contract, the following functions are declared but remain unused throughout

the contract:

o« _commitNewUintForRemoteRegistry

o« _commitNewBoolForAddressOnRemoteRegistry
 addBoolRegistry

« removeBoolRegistry

Unused functions introduce unnecessary complexity, increase the contract size, and raise the potential
for confusion or future security issues. Additionally, these functions may consume unnecessary gas costs
during contract deployment.

BVSS
AQ:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U (1.0)

Recommendation

If these functions are not intended to be used in the future or have been deprecated, it is recommended
to remove them from the contract to reduce contract size and avoid potential confusion.

However, if these functions are planned for future use, consider adding comments explaining their
purpose and ensuring they are properly tested and implemented before use.

Remediation Comment

SOLVED: The Concrete team solved this issue by removing unused functions.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U

7.27 EMPTY PACKET GAP
// INFORMATIONAL

Description

In the LenderBlueprint contract, the _initialBorrow function introduces an issue when
borrowToken == address(0) . In this case, the packetsArrays.packetsIdx is set to a fixed value.
However, subsequent packet filling increments packetsArrays.packetsIdx without properly handling
the case when borrowToken is set to the zero address. This results in an empty gap in the
packetsArrays.packets array, which can lead to inconsistencies in the data being sent between
contracts.

This could cause issues with cross-chain communications or the handling of messages, as the missing
packet could lead to unexpected behavior or misinterpretation of packet data.

BVSS
AQ:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U (1.0)

Recommendation

Introduce logic to skip the unnecessary increment of packetsArrays.packetsIdx when borrowToken
== address(@) to ensure that no empty packet gaps are created.

Remediation Comment

NOT APPLICABLE: The Concrete team marked this issue as not applicable. During _storeInTemp and
_sendMultiMessage functions, the construction of the array of keys has been optimized to eliminate

gaps.

References

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:N/S:U

7.28 REDUNDANT ONLYROLE MODIFIER
// INFORMATIONAL

Description

In the RegistryManager contract, the internal functions _removeRemoteTokenToRegistry and
_addRemoteTokenToRegistry have the onlyRole(REGISTRY_ADMIN) modifier applied. Thisis
redundant because these internal functions are typically called by external or public functions that
already enforce role-based access control. Having the onlyRole modifier on both the external caller and
the internal function results in unnecessary code duplication and adds extra gas costs.

It is more efficient to apply the onlyRole modifier either at the external/public level or at the internal
function level, but not both. Since these functions are internal, the access control should only be applied
to the public or external-facing functions, ensuring consistency and reducing unnecessary computation.

BVSS
AO:S/AC:L/AX:L/C:N/I:M/A:N/D:M/Y:N/R:P/S:U (0.8)

Recommendation

Remove the onlyRole (REGISTRY_ADMIN) modifier from the internal functions
_removeRemoteTokenToRegistry and _addRemoteTokenToRegistry . Ensure that the external
functions that call these internal functions are properly protected with access control checks.

Remediation Comment

SOLVED: The Concrete team solved this issue by removing the modifier.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:M/Y:N/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:M/Y:N/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:M/Y:N/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:M/A:N/D:M/Y:N/R:P/S:U

7.29 INEFFICIENT PLACEMENT OF AMOUNTSUPPLY CHECK
// INFORMATIONAL

Description

In the LenderBlueprint contract, the _initialSupplyPrimitive function performs a validation on
amountSupply_ only after several other checks and logic have been executed. The amountSupply_
check verifies that the supplied amount is greater than zero, which is a fundamental requirement for
continuing the process. If this check fails, all prior logic would have been unnecessarily executed.

This leads to inefficiency in the contract's execution, as checks on fundamental parameters like
amountSupply_ should be performed at the earliest possible point to save gas and prevent wasted
computations.

BVSS
AOQ:S/AC:L/AX:L/C:N/I:L/A:L/D:N/Y:N/R:N/S:U (0.8)

Recommendation

Move the require check for amountSupply_ > @ to the beginning of the function, along with other
error checks. This will improve the efficiency of the contract by ensuring that the function halts early if
the supplied amount is invalid, thereby saving unnecessary computational costs.

Remediation Comment

SOLVED: The Concrete team solved this issue by checking for amountSupply_ > @ moved to the
beginning of the function.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:L/A:L/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:L/A:L/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:L/A:L/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:L/A:L/D:N/Y:N/R:N/S:U

7.30 LACK OF EVENTS FOR STATE CHANGES
// INFORMATIONAL

Description

Important state-changing functions such as setAddress, setUint, setString, etc., do not emit
events. This can make it challenging to track changes and debug issues.

BVSS
AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation

Consider emitting events in all state-changing functions.

event AddressSet(bytes32 indexed key, address value);
event UintSet(bytes32 indexed key, uint256 value);
event StringSet(bytes32 indexed key, string value);
// Emit these events in respective functions

Remediation Comment

ACKNOWLEDGED: The Concrete team acknowledged this finding.

7.31 OWNERSHIP ASSUMPTIONS
// INFORMATIONAL

Description

The contract uses Ownable, and assumes that the multisig_ provided in the constructor will always
be secure and correctly managed. If this address is compromised, the whole storage system can be at
risk.

BVSS
AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation

Consider the multisig address is always managed securely. Implement additional checks if necessary.

Remediation Comment

ACKNOWLEDGED: The Concrete team acknowledged this finding.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

