/| Security Assessment 02.28.2025 - 03.06.2025

Curve/Pendlie

Strategy
Blueprint Finance

H/\L_BLIRIN

Curve/Pendle Strategy - Blueprint Finance

Prepared by: gzl HALBORN
Last Updated 03/24/2025
Date of Engagement: February 28th, 2025 - March 6th, 2025

Summary

100°% O OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS CRITICAL HIGH MEDIUM LOW INFORMATIONAL
14 o 1 3 3 7

TABLE OF CONTENTS

. Introduction
. Assessment summary
. Test approach and methodology

. Scope
. Assessment summary & findings overview

1
2
3
4. Risk methodology
5
6
7. Findings & Tech Details

7.1 Insufficient slippage protection leads to loss of funds

7.2 Reward accrual calculation inaccuracy due to failed transfers
7.3 Dos for withdraw operations in pendle strateqgy

7.4 Broken reward approval mechanism

7.5 Missing multi-hop support for uniswapv3

7.6 Forced slippage inclusion

7.7 Suboptimal deposit flow in pendle strategy

7.8 Missing event emissions for relevant state updates

7.9 Direct erc20 transfer to vault (erc4626) does not credit shares
7.10 Missing check when assigning address to state variable

7.11 Incorrect natspec documentation

7.12 Use of magic numbers

7.13 Misplaced nonreentrant modifier

7.14 PushQ and newer opcodes might not be supported in all chains

8. Automated Testing

Blueprint Finance engaged Halborn to conduct a security assessment on their smart contracts
beginning on February 28th, 2025 and ending on March 10th, 2025. The security assessment was
scoped to the smart contracts provided in the Blueprint-Finance/sc_earn-vi Github repository

provided to Halborn. Further details can be found in the Scope section of this report.

2. Assessment Summary

Halborn was provided 7 days for the engagement, and assigned one full-time security engineer to
review the security of the smart contracts in scope. The engineer is a blockchain and smart
contract security expert with advanced penetration testing and smart contract hacking skills, and
deep knowledge of multiple blockchain protocols.

The purpose of the assessment is to:

« lIdentify potential security issues within the smart contracts.
« Ensure that smart contract functionality operates as intended.

In summary, Halborn identified some improvements to reduce the likelihood and impact of risks,
which were mostly addressed by the Blueprint Finance team. The main ones were the following:

« Accept a slight variation (slippage) on expected output when withdrawing from
Pendle strategy.

« Replace the hard-coded @ (zero) in the call to remove_liquidity_one_coin with
a carefully computed minimum.

« When harvesting rewards, enforce safe transfer (passing true as argument to
the parameter), so it would handle gracefully all non-standard ERC20 tokens.

« Remove the forced 3% slippage if the intent is to let users specify the full
slippage themselves.

« Add an option for multi-hop swaps, using the ISwapRouter.exactInput(params)
with an encoded path.

e In Pendle's strategy _protocolDeposit function, disable Keep YT mode, or
directly use a function that does not mint YT at all.

https://github.com/Blueprint-Finance/sc_earn-v1

3. Test Approach And Methodology

Halborn performed a combination of manual and automated security testing to balance
efficiency, timeliness, practicality, and accuracy in regard to the scope of this assessment. While
manual testing is recommended to uncover flaws in logic, process, and implementation;
automated testing techniques help enhance coverage of the code and can quickly identify items
that do not follow the security best practices. The following phases and associated tools were
used during the assessment:

« Research into architecture and purpose.

« Smart contract manual code review and walkthrough.

« Graphing out functionality and contract logic/connectivity/functions (solgraph).

« Manual assessment of use and safety for the critical Solidity variables and functions in
scope to identify any arithmetic related vulnerability classes.

« Manual testing by custom scripts.

« Static Analysis of security for scoped contract, and imported functions (slither).

« Testnet deployment (Foundry).

4. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a
Severity Coefficient. This system is inspired by the industry standard Common Vulnerability
Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical
means by which vulnerabilities can be exploited and Impact describes the consequences of a
successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two
factors: Reversibility and Scope. These capture the impact of the vulnerability on the environment
as well as the number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to
the highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level
of risk to address the most critical issues in a timely manner.

41 EXPLOITABILITY
ATTACK ORIGIN [AO):

Captures whether the attack requires compromising a specific account.

ATTACK COST (AC).

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a
single transaction on the relevant blockchain. Includes but is not limited to financial and
computational cost.

ATTACK COMPLEXITY (AX):

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and
regulatory challenges.

METRICS:

EXPLOITABILITY METRIC (ME) METRIC VALUE NUMERICAL VALUE

Arbitrary (AO:A) 1

Attack Origin (AO) Specific (AO:S) 0.2

EXPLOITABILITY METRIC (ME) METRIC VALUE NUMERICAL VALUE

Low (AC:L) 1
Attack Cost (AC) Medium (AC:M) 0.67
High (AC:H) 0.33

Low (AX:L) 1
Attack Complexity (AX) Medium (AX:M) 0.67
High (AX:H) 0.33

Exploitability F is calculated using the following formula:

E:Hme

4.2 IMPACT
CONFIDENTIALITY (C).

Measures the impact to the confidentiality of the information resources managed by the contract
due to a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized
users only.

INTEGRITY (I):

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVAILABILITY ([(A):

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

DEPOSIT (D).

Measures the impact to the deposits made to the contract by either users or owners.
YIELD (Y):

Measures the impact to the yield generated by the contract for either users or owners.

METRICS:

IMPACT METRIC (M7) METRIC VALUE NUMERICAL VALUE
None (I:N) 0
Low (I:L) 0.25
Confidentiality (C) Medium (I:M) 0.5
High (I:H) 0.75
Critical (I:C) 1
None (I:N) 0
Low (I:L) 0.25
Integrity (1) Medium (I:M) 0.5
High (I:H) 0.75
Critical (I:C) 1
None (A:N) 0]
Low (A:L) 0.25
Availability (A) Medium (A:M) 0.5
High (A:H) 0.75
Critical (A:C) 1
None (D:N) 0]
Low (D:L) 0.25
Deposit (D) Medium (D:M) 0.5
High (D:H) 0.75
Critical (D:C) 1
None (Y:N) 0]
Low (Y:L) 0.25
Yield (Y) Medium (Y:M) 0.5
High (Y:H) 0.75
Critical (Y:C) 1

Impact I is calculated using the following formula:

> my — max(my)
4

I = max(my) +

4.3 SEVERITY COEFFICIENT
REVERSIBILITY [R):

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

SCOPE (S):

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

METRICS.
SEVERITY COEFFICIENT (C) COEFFICIENT VALUE NUMERICAL VALUE
None (R:N) i
Reversibility (r) Partial (R:P) 0.5
Full (R:F) 0.25

SEVERITY COEFFICIENT (C)

COEFFICIENT VALUE

NUMERICAL VALUE

Scope (8)

Changed (S:C)
Unchanged (S:U)

1.25

Severity Coefficient C'is obtained by the following product:

C =rs

The Vulnerability Severity Score .S is obtained by:

S = min(10, EIC % 10)

The score is rounded up to 1 decimal places.

SEVERITY

Critical

Medium

Informational

SCORE VALUE RANGE

45-6.9

FILES AND REPOSITORY

(a) Repository:
(b) Assessed Commit ID: f12bdbf

(c) Items in scope:

« src/strategies/PendleV2/PendleV2Strategy.sol
« src/strategies/CurveV2/CurveV2Strategy.sol

« src/strategies/StrategyBase.sol

« src/libraries/UniswapV3HelperVi.sol

Out-of-Scope: Third-party dependencies and economic attacks.

REMEDIATION COMMIT ID:

o https://github.com/Blueprint-Finance/sc_earn-vi/pull/152/commits/1192fd367a5976
80bab6B65he88ed84ff0cfbbb867

o https://github.com/Blueprint-Finance/sc_earn-vi/pull/152/commits/9d8e3ac8bb8e9b
181594851fd8e9e6138a29c582

o https://github.com/Blueprint-Finance/sc_earn-vi/pull/152/commits/be3f2dd8db2c57
abBbbc4701el17ch61b3a0f2aeb

o https://github.com/Blueprint-Finance/sc_earn-vi/pull/152/commits/9f2c0d62¢77d15
7eee70eeb61227cc23e774240cl

o https://github.com/Blueprint-Finance/sc_earn-vi/pull/152/commits/408b8144acc62d
75c3d94bbcchff3954e426c419

Out-of-Scope: New features/implementations after the remediation commit IDs.

6. ASSESSMENT SUMMARY & FINDINGS OVERVIEW

CRITICAL HIGH MEDIUM LOW
o 1 3 3
INFORMATIONAL

7

https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/1192fd367a597680ba665be88ed84ff0cf5bb867
https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/1192fd367a597680ba665be88ed84ff0cf5bb867
https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/9d8e3ac8bb8e9b181594851fd8e9e6138a29c582
https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/9d8e3ac8bb8e9b181594851fd8e9e6138a29c582
https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/be3f2dd8db2c57ab6bbc4701e17cb61b3a0f2ae6
https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/be3f2dd8db2c57ab6bbc4701e17cb61b3a0f2ae6
https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/9f2c0d62c77d157eee70ee61227cc23e774240c1
https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/9f2c0d62c77d157eee70ee61227cc23e774240c1
https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/408b8144acc62d75c3d94bbcc5ff3954e426c419
https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/408b8144acc62d75c3d94bbcc5ff3954e426c419

SECURITY ANALYSIS

INSUFFICIENT SLIPPAGE PROTECTION LEADS TO
LOSS OF FUNDS

REWARD ACCRUAL CALCULATION INACCURACY
DUE TO FAILED TRANSFERS

DOS FOR WITHDRAW OPERATIONS IN PENDLE
STRATEGY

BROKEN REWARD APPROVAL MECHANISM

MISSING MULTI-HOP SUPPORT FOR UNISWAPV3

FORCED SLIPPAGE INCLUSION

SUBOPTIMAL DEPOSIT FLOW IN PENDLE
STRATEGY

MISSING EVENT EMISSIONS FOR RELEVANT
STATE UPDATES

DIRECT ERC20 TRANSFER TO VAULT (ERC4626)
DOES NOT CREDIT SHARES

MISSING CHECK WHEN ASSIGNING ADDRESS TO
STATE VARIABLE

RISK LEVEL

MEDIUM

MEDIUM

MEDIUM

INFORMATIONAL

INFORMATIONAL

INFORMATIONAL

REMEDIATION DATE

SOLVED - 03/19/2025

SOLVED - 03/21/2025

SOLVED - 03/19/2025

SOLVED - 03/19/2025

RISK ACCEPTED -
03/19/2025

RISK ACCEPTED -
03/19/2025

SOLVED - 03/19/2025

ACKNOWLEDGED -
03/19/2025

ACKNOWLEDGED -
03/19/2025

SOLVED - 03/19/2025

SECURITY ANALYSIS

INCORRECT NATSPEC DOCUMENTATION

USE OF MAGIC NUMBERS

MISPLACED NONREENTRANT MODIFIER

PUSHO AND NEWER OPCODES MIGHT NOT BE
SUPPORTED IN ALL CHAINS

RISK LEVEL

REMEDIATION DATE

INFORMATIONAL SOLVED - 03/19/2025

INFORMATIONAL SOLVED - 03/19/2025

INFORMATIONAL SOLVED - 03/19/2025

ACKNOWLEDGED -

INFORMATIONAL
03/19/2025

7. FINDINGS 8 TECH DETAILS

7.1 INSUFFICIENT SLIPPAGE PROTECTIONLEADS TO
LOSS OF FUNDS

/] HIGH

Description

When adding or removing liquidity, the CurveV2Stragegy contract currently calculates
estimatedLp (deposit side) or calc_withdraw_one_coin (withdrawal side) but does not
consistently enforce a strict minimum amount out (beyond 0). This exposes the strategy to high
slippage or price manipulation.

Specifically:

* Deposit:

The code calculates estimatedLp and sets minLp = estimatedLp.mulDiv(10_000 -
MAX_SLIPPAGE, 10_000). This is good for a baseline, but consider verifying the entire deposit flow
to ensure minLp is being applied each time. If minLp is set to O (zero) or is not enforced in certain
paths, attackers or front-runners could manipulate pool balances, causing the strategy to mint
fewer LP tokens than expected.

function _protocolDeposit(uint256 amount_, uint256 minLp) internal virtual override {
uint256 estimatedLp;
uint256 minlLp;
if (N_COINS == 2) {
uint256[2] memory amounts;
amounts[uint256(tokenIndex)] = amount_;
estimatedLp = curvePool.calc_token_amount(amounts, true);
minLp = estimatedLp.mulDiv(10_000 - MAX_SLIPPAGE, 10_000);
// @dev curvePool supports only fixedSize arrays, the interface is in vypers context
curvePool .add_liquidity(amounts, minLp);
} else if (N_COINS == 3) {
uint256[3] memory amounts;
amounts[uint256(tokenIndex)] = amount_;
estimatedLp = curvePool.calc_token_amount(amounts, true);
minLp = estimatedLp.mulDiv(10_000 - MAX_SLIPPAGE, 10_000);
curvePool .add_liquidity(amounts, minLp);
} else if (N_COINS == 4) {
uint256[4] memory amounts;
amounts[uint256(tokenIndex)] = amount_;
estimatedLp = curvePool.calc_token_amount(amounts, true);
minLp = estimatedLp.mulDiv(10_000 - MAX_SLIPPAGE, 10_000);
curvePool .add_liquidity(amounts, minLp);
}
// Stake LP tokens into the gauge
uint256 1pReceived = IERC20(LlpToken).balanceOf(address(this));
IERC20(1lpToken).approve(address(curveGauge), lpReceived);
ICurveGauge(curveGauge).deposit(lpReceived);

» Withdrawal:

The function _protocolWithdraw calls remove_liquidity_one_coin(1lpAmountToWithdraw,
int128(tokenIndex), @) with a hard-coded minAmount=0 (zero). This means the strateqgy is
vulnerable to receiving far less underlying asset than expected if there’s a significant pool

imbalance or a front-running scenario.

function _protocolWithdraw(uint256 amount_, uint256) internal virtual override {
uint256 lpBalance = IERC20(address(curveGauge)).balanceOf(address(this));
uint256 assetAmount = curvePool.calc_withdraw_one_coin(lpBalance, int128(tokenIndex));
uint256 1lpAmountToWithdraw = amount_.mulDiv(lpBalance, assetAmount);
// Unstake LP tokens from the gauge
ICurveGauge(curveGauge) .withdraw(lpAmountToWithdraw);
// Withdraw single asset from Curve pool
ICurvePool(curvePool).remove_liquidity_one_coin(lpAmountToWithdraw, int128(tokenIndex), 0);

Proof of Concept

In order to reproduce this issue, use the following Foundry proof of concept. The code will illustrate
that a lack of minimum out in _protocolWWithdraw is an exploitable design.

e PoC Code:

// SPDX-License-Identifier: MIT
pragma solidity 0.8.24;

import "forge-std/Test.sol";

import {console2 as console} from "forge-std/console2.sol";

import {CurveV2StrategyTest} from "./CurveV2Strategy.t.sol";

import {ICurvePool, ICurveGauge} from "../../src/strategies/CurveV2/ICurveV2.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

contract CurveV2StrategyExploitMockCallTest is CurveV2StrategyTest {
address internal attacker = address(0x9999);

function setUp() public virtual override {
super.setUp(Q);
// Provide the attacker with large capital
deal(address(asset), attacker, 1_000_000e6);
vm.label(attacker, "Attacker");

/**
* @notice Demonstrates how the strategy's zero-minAmount slippage approach
* allows an attacker to manipulate the pool, causing massive user loss.
* We use vm.mockCall for simplicity.
<y
function test_ExploitSlippageCurveStrategy_Mock() public {

/***>I<***

* 1) Hazel Deposits into the Strategy

ks ok o ok sk ok o K sk ok o Kk ok ok K sk ok K sk ok ok sk ok ok sk ok ok Kk ok sk K sk ok K sk ok sk ok ok ok /
uint256 depositAmount = 10_000e6; // 10k USDC
deal(address(asset), hazel, depositAmount);

// The strategy calls:
// calc_token_amount(uint256[3] memory, bool) => uint256
// with deposit arrays for USDC-index=1 if nCoins=3
{
uint256[3] memory depositArray;
depositArray[1] = depositAmount;
bytes memory depositCalcData = abi.encodeWithSignature(
"calc_token_amount(uint256[3],bool)",
depositArray,
true
DN
// Pool returns 10,000 LP tokens for 10,000 USDC deposit
bytes memory depositCalcReturn = abi.encode(10_000e18);

vm.mockCall(address(CusdcPool), depositCalcData, depositCalcReturn);

// Also mock the actual add_liquidity function call if needed
// for a 3-coin pool => add_liquidity(Cuint256[3], uint256)
// We'll pass 10_000 LP as success, ignoring the returned value:
bytes memory addLiquidityData = abi.encodeWithSignature(
"add_liquidity(uint256[3],uint256)",
depositArray,
uint256(9000e18) // just must be <= the 10000 minted above after slippage
DK
// Return empty to simulate success
vm.mockCall(CaddressCusdcPool), addLiquidityData, new bytes(0));

// user deposits

vm.startPrankChazel);
TERC20(asset).approve(address(strategy), depositAmount);
uint256 hazelShares = strategy.deposit(depositAmount, hazel);
vm. stopPrank();

console.log("Hazel deposit done. Received strategy shares:", hazelShares);

// The strategy should now have staked ~10,000 LP in the gauge. Let's assume
// gauge balanceOf(strategy) is 10,000e18.

{
bytes memory gaugeBalData = abi.encodeWithSignature(
"balanceOf(address)",
address(strategy)
DK
// Return 10,000e18 as the gauge balance
bytes memory gaugeBalReturn = abi.encode(10_000e18);
vm.mockCall(address(CusdcGauge), gaugeBalData, gaugeBalReturn);
}

/K K ok ok ok ok o Kok ok o Kok ok o K ok ok o K sk ok ok sk ok o K sk ok o Kok ok ok ok ok ok K ok ok o K
* 2) Attacker Manipulates the Pool
***/

// We'll simulated that now the pool is drastically imbalanced.

// This can be achieved on-chain, for example, through Flash loans.

// The strategy calls:

// calc_withdraw_one_coin(lpBalance, int128(tokenIndex)) => e.g. (10,000e18, 1)

vm.startPrank(attacker);

{
bytes memory withdrawCalcData = abi.encodeWithSignature(
"calc_withdraw_one_coin(uint256,int128)",
uint256(10_000e18), // the staked LP tokens
int128(1) // USDC index
DK
bytes memory withdrawCalcReturn = abi.encode(1_000e6);
vm.mockCall(CaddressCusdcPool), withdrawCalcData, withdrawCalcReturn);
}
{
bytes memory removelLiquidityData = abi.encodeWithSignature(
"remove_liquidity_one_coin(uint256,int128,uint256)",
uint256(10_000e18),
int128(1),
uint256(0)
DK
vm.mockCall(address(CusdcPool), removeliquidityData, new bytes(0));
¥

vm.stopPrank();

/KK ok o K ok ok o Kok ok o Kok ok ok K ok ok o K sk ok ok sk ok o K sk ok o Kok ok o ok ok ok K ok ok o K
* 3) Hazel Withdraws => Massive Loss
***/

uint256 hazelBalBefore = IERC20(asset).balanceOf(Chazel);

console.log("Hazel USDC before withdraw:", hazelBalBefore);

// Even trying to withdraw only 20% of its shares, Hazel gets a revert.
// ERC4626ExceededMaxWithdraw()

vm.startPrankChazel);

vm.expectRevert();

strategy.withdrawChazelShares * 20 / 100, hazel, hazel);

vm. stopPrank(Q);

Logs

l— [ueturn]
o 7462] asset: approve(strategy: [8x56150R798B8IEAdFaB139dFa1bIDAIIcOI6T20], 1080000BBOB [1010])
[26673] B4F91 i:approvel(strategy: (BxS6L 7211, [1e18]) [delegatecall]
tcnt Approval(owner: spender: strategy: [axsaﬁumnamamFanusuramsmssccumﬂ value: 10000806008 (1=16])
[Return] true

L ~ [Return] true
- 1442084 strategy:: (1e18],
[2805] ﬁbe:FﬁszmmmsdEassaAEBFBAﬁBEzmwszn :balance0f (strategy: [uxsaudammmFuouwamsmss&uwzna [staticcall]

L - [Return] &

I [se5] E[th(Fﬁ%!%l)?IBEHEABSEASBFBAEBEZMWEZA :balance0f(strategy: [Bx5615dEB79BBBIEAFaR139dFa1b3D433Cc23b72f]) [staticcall]
Return] B

|- (28410 asset::transterfr strategy: 139dFalb3D433Cc230721], 10600606006 (1210])
654] 04F9138D1A2050bbF stransferfr strategy: [8x56150EB70BBB3E4dFaR1390Falb3D433Cc23b7211, 16060000080 [1:101) [delegatecalll
emit Transter(from: to: strategy: [Bx56150EB79BBBIE4dFal390FalniDa3dCc23b72f], value: 10806060808 [1=10])
+ [Return] true

« [Return] true

- [ld BxbEbc44782C7dBBa1ABACbEfe97d0b4B3032FFLCT: :cale_token_amount([@, 18808008008 [1:10], B], true) [staticcalll
+ [Return] 18600800800880080080008 [1:27

- [od @xbEbc4478207dBAa1ABBCbE fed7dBbAB3032FFLCT: :add_Liquidity([8, 10888880888 (1:10], 4], 90880B80BA0B0BBOBASBAR (0c21])
-

urn]
[1716] Bx6c3 FBMMEE" 2FA612cbacBl15EE7e52BDe6E490: thalanceOf (strategy: [0x5615dEB798BBIE4dFadligdFalb3D433Cc230721]) [staticcalll

[4562] Exﬁ(] meq]a? 2FAG12cbacBl15EE7e52BDe6E4%0: :approve {BxbFcF63294aD7185dEab5aA58FAAESBE2DIABIS2A, B)
ent Apprnva'l (owner: strategy: [8x56150EB79BBB3E4dFaBl39dFalh3D433Cc23b721], spender: BxbFcF63294aD7185dEaG5aASBFBAESBEZDIABIS2A, value: B)

rn] t
[337135] EbecFS]1945D71D5dEaﬁEaMBFBAEBEZWdWS]A depnslt (8)

[2586] 8xD53 s future_epoch_time_write()
L« [Return]
[1959] 8xD53 119CC77 ::rate() [staticcalll

« [Return]
[Ems] 8x2F5B0538686Fa9EDD2B11E2446BED 1BC9D5846!
« [Stop]

checkpoint_ F63294aD7° D9d8952A)

weigl ht E beF: FESZNIDTIOEMEWBSIASBFBAEEBEZDNMSH 17182368088 [1.718e9]) [staticcalll

E4dFad139dFa1b30a: czsxﬂlll parul @)

[emit Transfer(from: to: value: [1e18])
|- emit Deposit{sender: owner: , assets: [1e18], shares: 10606806008 [1=10])
L« [Return] 10606008808 [1=10]
{ (8] WM::stopPrank()

L . [Return
e ()] cur;sule::lugt"ﬂazel deposit done. Received strategy shares:", 16806066008 [1c10]) [staticcalll

~ [Stop!

(o1 vz ln:k(allﬁth:Fﬁjz‘}uDI 989524, Bx7H: 139dalb3d433cc2abrat,

~ [Retu

[B] ALH star‘tPrank(Aﬂacker)

- [Retu
[el VH: mockalL{BxbEbcA4T82CTB0a1AROC: F1C7, @xcc2n27d 1e19edc
1960083b00ca80)

L« [Retu
- (8] vu::-u:kCaumbebcunzcmmmc F1C7, Oxladdeld

L« [Return]
(- 18] WM::stopPrank()
L « [Return]
L (13391 asset:) [staticcalll
[5531 B[xﬁﬁ%?#?lﬂ(mmﬂBDIAZEEBDDFEAE(BEMZM :balance0f [delegatecall]
Return] &

[R:Eturrl] a
“il cunsule"lngﬁ"“ﬂzel USDC before withdraw:", 8) [staticcalll
[Stop]

— [8] wM::star
Lo [R,eturn]
- 8] w: expedﬁ.evert(:ustul error 8xf4844814)
~ [Re
i~ [2835] strategy swithdrawl [2e9],
{ [0} aan(FsazgnammsuEaﬁsaumaammwsu :balanceDf (strategy: [BxS5615dEB79BBBIEAFad139dFalbaD433Cc23072f]) [staticeall]

rn] 106060060600000000006000
(0] aben:-mBx?dmumcnﬁ!as‘mama]u]#rm :calc_withdraw_one_coin(10088060000606080000008 [122], 1) [staticcalll
+ [Return] 1¢ [19]
- [REvErt] ERC4626ExC it [2e9], [1e9])
{~ 8] WM::stopPrank()
L . [Returnl

L - [stopl

BVSS
AQ:A/AC:M/AX:L/R:N/S:U/C:N/A:N/I:L/D:M/Y:C (8.0)

Recommendation

To address this issue, it is recommended to:

« Continue using calc_token_amount to estimate the LP received and set minLp = estimatedLp
* (100% - slippageTolerance) in all deposit paths. Choose a tight but feasible slippage
tolerance (e.g., 0.5-1%), which is commonly used by strategies integrators.

» Replace the hard-coded O (zero) in the call to remove_liquidity_one_coin with a carefully
computed minimum. For example, use uint256 expected
curvePool.calc_withdraw_one_coin(1pAmountToWithdraw, int128(tokenIndex)); uint256
minOut = expected.mulDiv(10000 - slippageBasisPoints, 10000); to revert if actual
output is below the threshold.

Remediation Comment

SOLVED: The Blueprint Finance team has solved the issue as recommended.

Remediation Hash

https://github.com/Blueprint-Finance/sc_earn-vi/pull/152/commits/1192fd367a597680ba665be
88ed84ff0cf5bb867

https://www.halborn.com/portal/bvss?q=AO:A/AC:M/AX:L/R:N/S:U/C:N/A:N/I:L/D:M/Y:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:M/AX:L/R:N/S:U/C:N/A:N/I:L/D:M/Y:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:M/AX:L/R:N/S:U/C:N/A:N/I:L/D:M/Y:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:M/AX:L/R:N/S:U/C:N/A:N/I:L/D:M/Y:C
https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/1192fd367a597680ba665be88ed84ff0cf5bb867
https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/1192fd367a597680ba665be88ed84ff0cf5bb867

7.2 REWARD ACCRUAL CALCULATIONINACCURACY DUE
TO FAILED TRANSFERS

// MEDIUM

Description

The harvestRewards function of the StrategyBase contract currently trusts the success
indicator (boolean return value) of TokenHelper.attemptSafeTransfer without verifying the
actual transferred amount.

Tokens that do not strictly adhere to the ERC20 standard or unexpectedly implemented tokens
may return a success status (true) despite transferring fewer tokens than intended or no tokens
at all.

function harvestRewards()
{...}

uint256 collectedFee = claimedBalance.mulDiv(rewardTokens[i].fee, 10000, Math.Rounding.Ceil);

if (TokenHelper.attemptSafeTransfer(address(rewardAddress), feeRecipient, collectedFee, false)) {
rewardTokens[1].accumulatedFeeAccounted += collectedFee;
netReward = claimedBalance - collectedFee;
emit Harvested(_vault, netReward);

As a result, the contract incorrectly updates accumulatedFeeAccounted, causing discrepancies
between internal accounting and actual token balances. Over time, this could lead to significant
unnoticed financial damage, loss of user funds or leakage of rewards. An attacker or faulty token
implementation could exploit this vulnerability, causing the strategy to miscalculate its total value
locked (TVL), distribute rewards incorrectly or silently lose tokens.

BVSS
AQ:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:M (6.3)

Recommendation

It is recommended to enforce safe transfer (passing true as argument to the parameter), so it
would handle gracefully all non-standard ERC20 tokens.

Remediation Comment

SOLVED: The Blueprint Finance team has solved the issue as recommended.

Remediation Hash

https://github.com/Blueprint-Finance/sc_earn-vi/pull/152/commits/9d8e3ac8bb8e9b181594851
fd8e9e6138a29c582

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:M
https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/9d8e3ac8bb8e9b181594851fd8e9e6138a29c582
https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/9d8e3ac8bb8e9b181594851fd8e9e6138a29c582

7.3 DOS FOR WITHDRAW OPERATIONS IN PENDLE
STRATEGY

// MEDIUM

Description

In the PendleV2Strategy contract, when removing liquidity in _protocolWithdraw, the code
currently does:

TokenOutput memory output = createTokenOutputSimpleCasset(), amount_);
router.removelLiquiditySingleToken(

address(this), address(market), netTokenIn, output, createEmptyLimitOrderData()
DN

Where createTokenOutputSimple() is:

function createTokenOutputSimple(address tokenOut, uint256 minTokenOut)
internal

pure
returns (TokenOutput memory)

return TokenOutput({
tokenOut: tokenOut,
minTokenOut: minTokenOut,
tokenRedeemSy: tokenOut,
pendleSwap: address(0),
swapData: createSwapTypeNoAggregator()
i9H

In other words, this creates a scenario of strict equality on the slippage parameter, where
minTokenOut == amount_. If there are any negative price impact, protocol fees, or rounding inside
the router, the amount_ out will be slightly less, and this will cause consistent reverts.

In a real-world scenario, this will effectively lead the withdrawals to a Denial of Service state.

Proof of Concept

In order to reproduce this issue, consider using the following Foundry proof of concept.

« PoC Code:

function test_withdraw_shouldPass(uint256 amount_) public {
vm.startPrankChazel);
uint256 amount = 100 ether;
_mintAsset(amount, hazel);

asset.approve(address(strategy), amount);
uint256 shares = strategy.deposit(amount, hazel);

uint256 hazelBalBeforeWwl = asset.balanceOf(hazel);
assertGe(asset.balanceOf(Chazel), @, "Hazel asset balance");
assertEq(shares, amount, "Hazel share balance == amount");

uint256 expireTime = IPMarket(wstETHMarket).expiry();
vm.warp(expireTime + 100);
assertEq(
strategy.maxWithdrawChazel), amount, "Max withdraw should be close to amount deposited"
DK
strategy.withdraw(strategy.maxWithdrawChazel), hazel, hazel);

assertGt(asset.balanceOf(Chazel), hazelBalBeforeWwl, "Hazel new asset balance");
assertEq(asset.balanceOf(hazel), hazelBalBeforeWwl + amount, "Hazel new asset balance");
assertEq(strategy.balanceOfChazel), @, "Hazel new share balance");

vm. stopPrank(Q);

« Logs:

« [Return] 75c99d0432a78
~ [Return] 75¢ 2a70
[Return] -75c99d0432a70
[Return] 99999998266665282168 [9.999¢19], @, @, 100 @ [1e18], 9999999826666528216@ [0.999:19], 11336174642123073787 [1.133e219], 1020078940979412827083 [1.02220], @
« [Return] 99999998266665282160 [2.999¢19]1, @, @, 1 [1e18], 266665282160 [9.999¢19], 11336174642123073707 [1.133e19], 102007894097941282703 [1.02e201, @
[Return] 9999999826666528216@ [9.999e19]
[B] \M rassertEq(9999999826666528216@ [9.999¢19], 100080 pOAPARAD [1e20], "Max withdraw should be close to amount deposited") [staticcall]
+ [Revert] Max withdraw should be close to amount depaslted 282160 !=
lREh’EI"t] Max withdraw should be close to amount deposited: 266665282168 != 1

L L I: [1861] Bx!EellBEF[82§d3m29545eAfSbZEEECQESSZBISS:-:p;evie;lkedeem(;sset: [0x9D39A5DE30e57443BTF2AB307A4256C8797A3497], 99999998266665282160 [9.99%e19]) [staticcalll

Suite result: FAILED. @ passed; 1 failed; © skipped; finished in 452.36ms (6.77ms CPU time)
Ran 1 test suite in 1.59s (452.36ms CPU time): O tests passed, 1 failed, @ skipped (1 total tests)

Failing tests:

Encountered 1 failing test in test/strategies/PendleV2Strategy.t.sol:PendleV2StrategyTest
[FAIL: Max withdraw should be close to amount deposued 99999998266665282160 != 100000000000000000000; counterexample: calldata=@xcd5f5 T4564bd9de31d8azbea
91dbc args=[16713532796208846445081285696956 [1.671e31]1]1] test withdraw_shouldPass(uint256) (runs: @, p: @, ~: @)

BVSS
AQ:A/AC:L/AX:L/R:P/S:U/C:N/A:N/I:N/D:C/Y:C (6.3)

Recommendation

It is recommended to accept a slight variation (slippage) on expected output. Usually, the

calculation should look something like the following:

minTokenOut = amount_.mulDiv(100_00 - someAllowedSlippage, 100_00);

Remediation Comment

SOLVED: The Blueprint Finance team has solved the issue as recommended.

Remediation Hash

https://github.com/Blueprint-Finance/sc_earn-vi/pull/152/commits/be3f2dd8db2c57ab6bbc470
1el17cbB61b3alf2aeb

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:N/I:N/D:C/Y:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:N/I:N/D:C/Y:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:N/I:N/D:C/Y:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:N/I:N/D:C/Y:C
https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/be3f2dd8db2c57ab6bbc4701e17cb61b3a0f2ae6
https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/be3f2dd8db2c57ab6bbc4701e17cb61b3a0f2ae6

7.4 BROKEN REWARD APPROVAL MECHANISM
/| MEDIUM

Description

The approvals across the StrategyBase contract, mainly in the initializer __StrategyBase_init,
but also in the addRewardToken function have several issues that can lead to denial of service,
degraded user experience and inability to properly distribute rewards.The main reasons are as
follows:

1. Using unsafe ERC20.approve() method, instead of SafeERC20. forceApprove(): As already
mentioned, some ERC20 tokens are non-standard and require the allowances to be zeroed-out
before modified. USDT, for example, a widely used stablecoin, will revert unsafe calls to approve()
if the current allowance of the caller is greater than zero. If used as a reward token and the

approver has non-zero allowance, the contract initialization will effectively revert.

2. While newly added reward tokens are pushed into the rewardTokens array and marked as
approved, the actual call to token.approve (or even better, token. forceApprove) never happens.
During the initialization, the contract explicitly approves the targeted ERC20 with
type(uint256).max, but fails to do so in the addRewardToken function, despite updating the
state to rewardTokenApproved. This can cause later transfers or fee handling of newly added
token rewards to fail if the contract attempts to move them.

3. Some ERC20 tokens, such as $COMP and $UNI, will revert calls to approve() if the amount
passed as parameter is greater than type(uint96) .max, also leading to a DoS state.

function __StrategyBase_init(
IERC20 baseAsset_,
string memory shareName_,
string memory shareSymbol_,
address feeRecipient_,
uint256 depositLimit_,
address owner_,
RewardToken[] memory rewardTokens_,
address vault_

) internal initializer nonReentrant {
// Initialize inherited contracts
__ERC4626_init(IERC2@MetadataCaddress(baseAsset_)));
__ERC20_init(shareName_, shareSymbol_);
__Ownable_initCowner_);

// Iterate through the provided reward tokens to set them up
if (rewardTokens_.length != 0) {
for (uint256 i; i < rewardTokens_.length;) {
// Validate reward token address, current fee accounted, and high watermark
if (address(rewardTokens_[1i].token) == address(2)) {
revert InvalidRewardTokenAddress(Q);
}
if (rewardTokens_[1i].accumulatedFeeAccounted != 0) {
revert AccumulatedFeeAccountedMustBeZero();

b

// Approve the strategy to spend the reward token without limit
if (!rewardTokens_[1i].token.approve(address(this), type(uint256).max)) revert ERC2@0ApproveFail();
// Add the reward token to the strategy's list and mark it as approved
rewardTokens.push(rewardTokens_[1]);
rewardTokenApproved[address(rewardTokens_[1i].token)] = true;
unchecked {

i++;

3

// Validate and set the fee recipient address
if (feeRecipient_ == address(@)) revert InvalidFeeRecipient();
feeRecipient = feeRecipient_;

// Set the deposit limit for the strategy
if (depositLimit_ == @) revert InvalidDepositLimit();

depositLimit = depositLimit_;

// Calculate and set the decimals for the strategy's shares based on the base asset's decimals
decimals = IERC20MetadataCaddress(baseAsset)).decimals() + DECIMAL_OFFSET;

vault = vault;

function addRewardToken(RewardToken calldata rewardToken_) external onlyOwner nonReentrant {
// Ensure the reward token address is not zero, not already approved, and its parameters are correctly initialized.
if (address(rewardToken_.token) == address(0)) {
revert InvalidRewardTokenAddress();
¥
if (rewardTokenApproved[address(rewardToken_.token)]) {
revert RewardTokenAlreadyApproved();

}

if (rewardToken_.accumulatedFeeAccounted !'= 0) {
revert AccumulatedFeeAccountedMustBeZero();

}

// Add the reward token to the list and approve it for unlimited spending by the strategy.
rewardTokens.push(rewardToken_);
rewardTokenApproved[address(rewardToken_.token)] = true;

BVSS
AQ:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I1:M/D:N/Y:N (5.0)

Recommendation

In order to solve this issue, it is recommended to:

« Replace unsafe ERC20.approve() methods for SafeERC20. forceApprove(), which will handle
edge-cases gracefully.

« Modify the addRewardToken function so it actually performs the intended approval on the
targeted token.

Remediation Comment

SOLVED: The Blueprint Finance team has solved the issue as recommended.

Remediation Hash

https://github.com/Blueprint-Finance/sc_earn-vi/pull/152/commits/9f2c0d62¢c77d157eee70eeb
1227cc23e774240c1

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N
https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/9f2c0d62c77d157eee70ee61227cc23e774240c1
https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/9f2c0d62c77d157eee70ee61227cc23e774240c1

7.5 MISSING MULTI-HOP SUPPORT FOR UNISWAPV3
/] LOW

Description

All swap logic in the the UniswapV3HelperV1 library uses exactInputSingle, which supports only
one pool (single-hop). If the best route for a token pair requires multiple hops (e.g., no direct pool or
better pricing through an intermediate token), the library cannot handle it.

Although many pairs have direct liquidity, a missing multi-hop path can limit price efficiency or
break entirely if no direct pool exists for determined pair.

function swapExactInputSingle(ISwapRouter swapRouter, SwapParams memory params)
public
returns (uint256 swappedAmountOut)

ISwapRouter.ExactInputSingleParams memory exactInputSingleParams = ISwapRouter.ExactInputSingleParams({
tokenIn: params.tokenIn,
tokenOut: params.tokenOut,
fee: params.poolFee,
recipient: params.recipient,
deadline: block.timestamp,
amountIn: params.amountIn,
amountQutMinimum: params.minAmountOut,
sqrtPricelLimitX96: 0
s

swappedAmountOut = swapRouter.exactInputSingle(exactInputSingleParams);

BVSS
AQ:A/AC:L/AX:L/R:N/S:C/C:N/A:N/I:N/D:L/Y:L (3.9)

Recommendation

To solve this issue, it is recommended to add an option for multi-hop swaps, using the
ISwapRouter.exactInput(params) with an encoded path. Alternatively, in the case of supporting
single-hop swaps only, clearly document that the library does not support multi-hop swaps.

Remediation Comment

RISK ACCEPTED: The Blueprint Finance team has accepted the risk related to this finding.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:C/C:N/A:N/I:N/D:L/Y:L
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:C/C:N/A:N/I:N/D:L/Y:L
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:C/C:N/A:N/I:N/D:L/Y:L
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:C/C:N/A:N/I:N/D:L/Y:L

7.6 FORCED SLIPPAGE INCLUSION
/] LOW

Description

In the UniswapV3HelperV1 library, the swapToToken function takes an user-defined minAmountOut
but then applies an additional 3% slippage.

// calculate minAmountOut with max slippage
minAmountOut = minAmountOut.mulDiv(100_00 - UNISWAPV3_MAX_SLIPPAGE, 100_00, Math.Rounding.Floor);

If the user already included slippage in their minAmountOut, this code further enforces another 3%
slippage. This can be surprising or undesirable if the user expects minAmountOut to be exactly as
passed in the function parameter.

BVSS
AQ:A/AC:L/AX:L/R:N/S:C/C:N/A:N/I:N/D:L/Y:L (3.9)

Recommendation

To solve this issue, it is recommended to:

o Clarify in the documentation that minAmountOut will be subjected to another 3% slippage
factor.

« Rename the parameter, for example, to expectedAmountOut and calculate a final

minAmountOut in the function implementation.
« Remove the forced 3% slippage if the intent is to let users specify the full slippage themselves.

Remediation Comment

RISK ACCEPTED: The Blueprint Finance team has accepted the risk related to this finding.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:C/C:N/A:N/I:N/D:L/Y:L
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:C/C:N/A:N/I:N/D:L/Y:L
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:C/C:N/A:N/I:N/D:L/Y:L
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:C/C:N/A:N/I:N/D:L/Y:L

7.7 SUBOPTIMAL DEPOSIT FLOW IN PENDLE STRATEGY
/] LOW

Description

When depositing into the Pendle strategy, the code explicitly calls Pendle's
addLiquiditySingleTokenKeepYt () methods, which results in both LP and YT tokens being
minted. Immediately afterward, the strategy swaps the newly minted YT back into the underlying
asset and sends it back to the vault:

function _protocolDeposit(uint256 amount_, uint256) internal virtual override {
if (market.isExpired()) revert MarketExpired();

(uint256 netlLpOut, uint256 netYtOut,,) =
routerStatic.addLiquiditySingleTokenKeepYtStatic(address(market), address(asset()), amount_);

uint256 minLpOut = netlLpOut.mulDiv(100_00 - MAX_SLIPPAGE, 100_00);

uint256 minYtOut = netYtOut.mulDiv(100_0@ - MAX_SLIPPAGE, 100_00);

TokenInput memory input = createTokenInputSimple(address(asset()), amount_);

router.addLiquiditySingleTokenKeepYt(address(this), address(market), minLpOut, minYtOut, input);

// @dev: we swap all the YT to asset
uint256 ytBalance = IERC20(_YT).balanceOf(address(this));
if (ytBalance > 0) {
(uint256 estimatedTokenOut,,,,,,,) =
routerStatic.swapExactYtForTokenStatic(address(market), ytBalance, asset());
uint256 minTokenOut = estimatedTokenOut.mulDiv(100_00 - MAX_SLIPPAGE, 100_00);
LimitOrderData memory limitOrderData = createEmptyLimitOrderData();
TokenOutput memory tokenOutput = createTokenOutputSimple(address(asset()), minTokenOut);

(uint256 netTokenOut,,) =

router.swapExactYtForToken(address(this), address(market), ytBalance, tokenOutput, limitOrderData);
// @dev: transfer the assets to the vault, else it can mess up the _protocolWithdraw function
TERC20(asset()).safeTransfer(_vault, netTokenOut);

This flow can cause extra slippage, gas costs and confusion for depositors because part of the
deposit is effectively "refunded" to the vault instead of remaining in the strategy. Per standard
Pendle best practices, a yield strategy that does not intend to hold YT (short yield) usually calls
the variant of Pendle's add-liquidity zap that omits Keep YT mode, thus consolidating the deposit
into LP or PT tokens in a single atomic transaction. That approach reduces complexity, gas
overhead and potential slippage issues.

Alternatively, if the strategy aims to be "long yield", it should intentionally retain YT and handle its
claimable yield properly, rather than selling it immediately.

In the current implementation, the strategy performs unnecessary mint-and-sell steps, increasing
gas usage and slippage costs. A portion of the user's deposit is returned to the vault soon after
deposit, which may not match the user's expectation that 100% of the deposit is invested. If the
design is to remain "short yield", the simpler route is to avoid YT creation altogether, which leads
to more predictable user outcomes.

BVSS
AQ:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:L (3.1)

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:L
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:L
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:L
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:L

Recommendation

If the strategy intends to be "short yield" (no YT exposure), disable Keep YT mode, or directly use a
function that does not mint YT at all. Pendle natively supports an atomic deposit flow that
converts the underlying asset to LP or PT in a single step. This ensures the user's deposit goes
directly into the final intended tokens (PT or LP), avoiding an unnecessary second step of selling
YT and transferring proceeds out.

If the contract is never supposed to hold YT, do not mint YT in the first place. Instead, deposit the
underlying into the Pendle Router in a single call that produces only the desired tokens (PT or LP).

In any case, clarify the deposit flow through NatSpec for users, integrators and auditors.

Remediation Comment

SOLVED: The Blueprint Finance team has solved the issue as recommended.

Remediation Hash

https://github.com/Blueprint-Finance/sc_earn-vi/pull/152/commits/be3f2dd8db2c57ab6bbc470
1e17cbB1b3a0f2aeb

https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/be3f2dd8db2c57ab6bbc4701e17cb61b3a0f2ae6
https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/be3f2dd8db2c57ab6bbc4701e17cb61b3a0f2ae6

7.8 MISSING EVENT EMISSIONS FOR RELEVANT STATE
UPDATES

// INFORMATIONAL

Description

Throughout the scope, including PendleV2Stragegy, CurveV2Strategy, UniswapV3HelperV1 and
StrategyBase, the only declared event is in the StragegyBase contract, as follows:

event Harvested(address indexed harvester, uint256 tvl);

Effectively, there are no other events emitted upon significant state transitions or user actions.
Typical operations such as deposits, withdrawals, reward claims and token swaps do not produce
any on-chain logs besides the raw ERC20 transfer events.

Events provide several benefits, such as:

« User and Developer transparency: Allows off-chain clients (block explorers, Ul dashboards,
analytics services) to detect and parse events for real-time updates or historical queries.

« Debug and Auditing: Simplifies debugging transactions and verifying the correctness of
operations.

« Monitoring and Alerts: Third-party watchers rely on event emission to trigger notifications, logs
or further automated actions.

BVSS
AQ:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (1.7)

Recommendation

For each relevant state update or user-driven action, emit an event that includes relevant details -
e.g. sender, amounts, timestamps and references to input and output tokens, when applicable. For
example:

event Withdraw(address indexed caller, uint256 indexed amountIn, uint256 indexed amountOut, uint64 timestamp);

Although slightly less gas-efficient, indexed event fields make the data more quickly accessible to
off-chain tools that parse events, and add them to a special data structure known as “topics”
instead of the data part of the log. In Solidity, each event declaration is allowed to carry up to 3
(three) indexed fields.

Remediation Comment

ACKNOWLEDGED: The Blueprint Finance team has acknowledged the finding.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N

7.9 DIRECT ERC20 TRANSFER TO VAULT (ERC4626)
DOES NOT CREDIT SHARES

// INFORMATIONAL

Description

In _protocolDeposit of the PendleV2Stragegy contract, the strategy swaps YT for the
underlying asset and transfer it directly to the vault via
IERC20(asset()).safeTransfer(_vault, netTokenOut);.

function _protocolDeposit(uint256 amount_, uint256) internal virtual override {
if (market.isExpired()) revert MarketExpired();

(uint256 netLpOut, uint256 netYtOut,,) =
routerStatic.addLiquiditySingleTokenKeepYtStatic(address(market), address(asset()), amount_);

uint256 minLpOut = netLpOut.mulDiv(100_00 - MAX_SLIPPAGE, 100_00);

uint256 minYtOut = netYtOut.mulDiv(100_00 - MAX_SLIPPAGE, 100_00);

TokenInput memory input = createTokenInputSimple(Caddress(asset()), amount_);

router.addLiquiditySingleTokenKeepYt(address(this), address(market), minLpOut, minYtOut, input);

// @dev: we swap all the YT to asset
uint256 ytBalance = IERC20(_YT).balanceOf(address(this));
if (ytBalance > 0) {
(uint256 estimatedTokenOut,,,,,,,) =
routerStatic.swapExactYtForTokenStatic(address(market), ytBalance, asset());
uint256 minTokenOut = estimatedTokenOut.mulDiv(100_00 - MAX_SLIPPAGE, 100_00);
LimitOrderData memory limitOrderData = createEmptyLimitOrderData();
TokenOutput memory tokenOutput = createTokenOutputSimple(address(asset()), minTokenOut);

(uint256 netTokenOut,,) =

router.swapExactYtForToken(address(this), address(market), ytBalance, tokenOutput, limitOrderData);
// @dev: transfer the assets to the vault, else it can mess up the _protocolWithdraw function
IERC20(Casset()).safeTransfer(_vault, netTokenOut);

In a standard ERC4626 vault, direct ERC20 transfers do not credit anyone with new shares. The
tokens end up in the vault contract address, but the vault has no record of who should own those
assets, effectively resulting in loss of funds for the depositor. There's an immediate risk of funds
being permanently loss.

BVSS
AQ:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation

Do not perform direct transfers of underlying tokens to the vault address. Instead, call proper
ERC4626 methods such as deposit() or mint() so it properly updates internal share balances for
the intended recipient. If the vault operates under non-standard patterns (i.e. different from
ERC4626), confirm that direct ERC20 deposits are recognized.

Remediation Comment

ACKNOWLEDGED: The Blueprint Finance team has acknowledged the finding.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

7.10 MISSING CHECK WHEN ASSIGNING ADDRESS TO
STATE VARIABLE

// INFORMATIONAL

Description

In the StrategyBase contract, during contract's initialization through the __StrategyBase_init
function, a value for the _vault address state variable is attributed. However, the function is
missing a check to revert in cases the value passed as parameter is the address(0) - zero
address, what could lead to ultimate inefficiency.

function __StrategyBase_init(
IERC20 baseAsset_,
string memory shareName_,
string memory shareSymbol_,
address feeRecipient_,
uint256 depositLimit_,
address owner_,
RewardToken[] memory rewardTokens_,
address vault_

) internal initializer nonReentrant {
// Initialize inherited contracts
__ERC4626_init(IERC2OMetadata(address(baseAsset_)));
__ERC20_init(shareName_, shareSymbol_);
__Ownable_initCowner_);

// Iterate through the provided reward tokens to set them up
if (rewardTokens_.length != 0) {
for (uint256 i; i < rewardTokens_.length;) {
// Validate reward token address, current fee accounted, and high watermark
if (address(rewardTokens_[1i].token) == address(2)) {
revert InvalidRewardTokenAddress();

1

if (rewardTokens_[i].accumulatedFeeAccounted !'= 0) {
revert AccumulatedFeeAccountedMustBeZero();

}

// Approve the strategy to spend the reward token without limit
if (!rewardTokens_[1i].token.approve(address(this), type(uint256).max)) revert ERC20ApproveFail();
// Add the reward token to the strategy's list and mark it as approved
rewardTokens.push(rewardTokens_[1]);
rewardTokenApproved[address(rewardTokens_[i].token)] = true;
unchecked {
i++;
}
¥
// Validate and set the fee recipient address
if (feeRecipient_ == address(@)) revert InvalidFeeRecipient();

feeRecipient = feeRecipient_;

// Set the deposit limit for the strategy
if (depositLimit_ == 0) revert InvalidDepositLimit();

depositLimit = depositLimit_;
// Calculate and set the decimals for the strategy's shares based on the base asset's decimals

decimals = IERC20MetadataCaddress(baseAsset)).decimals() + DECIMAL_OFFSET;
vault = vault;

BVSS
AQ:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

Recommendation

Include a control-flow verification (if statement with revert() - following current style-quide),
and revert the call in case the value passed to the function parameter address vault_ is the
address(0).

Remediation Comment

SOLVED: The Blueprint Finance team has solved the issue as recommended.

Remediation Hash

https://github.com/Blueprint-Finance/sc_earn-vi/pull/152/commits/be3f2dd8db2c57ab6bbc470
1e17cbB1b3a0f2aeb

7.11 INCORRECT NATSPEC DOCUMENTATION
// INFORMATIONAL

Description

In both PendleV2Strategy and CurveV2Stragegy contracts, in the _protocolWithdraw function,
the NatSpec documentation incorrectly mentions the Aave protocol, as follows:

Vii
* @dev Withdraws assets from the Aave protocol.

* @param amount_ The amount of assets to withdraw.
274

BVSS
AO:A/AC:L /AX:L /R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation

Update the NatSpec documentation to reflect the actual callee protocol.

Remediation Comment

SOLVED: The Blueprint Finance team has solved the issue as recommended.

Remediation Hash

https://github.com/Blueprint-Finance/sc_earn-vi/pull/152/commits/408b8144acc62d75c3d94bb
ccbff3954e426¢419

https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/be3f2dd8db2c57ab6bbc4701e17cb61b3a0f2ae6
https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/be3f2dd8db2c57ab6bbc4701e17cb61b3a0f2ae6
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/408b8144acc62d75c3d94bbcc5ff3954e426c419
https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/408b8144acc62d75c3d94bbcc5ff3954e426c419

7.12 USE OF MAGIC NUMBERS
// INFORMATIONAL

Description

In multiple instances, the usage of magic numbers was observed. If the same constant (literal
number) is used multiple times across the contract or code-base, it should be defined using a
constant of appropriate type.

- As seen in src/strategies/CurveV2/CurveV2Strategy.sol [Line: 146]
minlp = estimatedlLp.mulDiv(10_000 - MAX_SLIPPAGE, 10_000);
- As seen in src/strategies/CurveV2/CurveV2Strategy.sol [Line: 149]
} else if (N_COINS == 3) {
- As seen in src/strategies/CurveV2/CurveV2Strategy.sol [Line: 150]
uint256[3] memory amounts;
- As seen in src/strategies/CurveV2/CurveV2Strategy.sol [Line: 153]
minlp = estimatedlLp.mulDiv(10_000 - MAX_SLIPPAGE, 10_000);
- As seen in src/strategies/CurveV2/CurveV2Strategy.sol [Line: 155]
} else if (N_COINS == 4) {
- As seen in src/strategies/CurveV2/CurveV2Strategy.sol [Line: 156]
uint256[4] memory amounts;
- As seen in src/strategies/CurveV2/CurveV2Strategy.sol [Line: 159]
minLp = estimatedLp.mulDiv(10_000 - MAX_SLIPPAGE, 10_000);
- As seen in src/strategies/CurveV2/ICurveV2.sol [Line: 15]
function calc_token_amount(uint256[3] memory amounts, bool isDeposit) external view returns (uint256);
- As seen in src/strategies/CurveV2/ICurveV2.sol [Line: 16]
function calc_token_amount(uint256[4] memory amounts, bool isDeposit) external view returns (uint256);
- As seen in src/strategies/CurveV2/ICurveV2.sol [Line: 19]
function add_liquidity(uint256[3] memory amounts, uint256 minLP) external;
- As seen in src/strategies/CurveV2/ICurveV2.sol [Line: 20]

function add_liquidity(uint256[4] memory amounts, uint256 minLP) external;

- As seen in src/strategies/PendleV2/PendleV2Strategy.sol [Line: 42]

if (MAX_SLIPPAGE > 100_00@) revert InvalidSlippage();
- As seen in src/strategies/PendleV2/PendleV2Strategy.sol [Line: 127]

uint256 minLpOut = netlLpOut.mulDiv(100_00 - MAX_SLIPPAGE, 100_00);
- As seen in src/strategies/PendleV2/PendleV2Strategy.sol [Line: 128]

uint256 minYtOut = netYtOut.mulDiv(100_00 - MAX_SLIPPAGE, 100_00);
- As seen in src/strategies/PendleV2/PendleV2Strategy.sol [Line: 137]

uint256 minTokenOut = estimatedTokenOut.mulDiv(100_00 - MAX_SLIPPAGE, 100_00);

BVSS
AO:A/AC:L /AX:L /R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation

Replace magic numbers across the code-based for well-defined constants with the appropriate
type.

Remediation Comment

SOLVED: The Blueprint Finance team has solved the issue as recommended.

Remediation Hash

https://github.com/Blueprint-Finance/sc_earn-vi/pull/152/commits/1192fd367a597680ba665be
88ed84ff0cf5bb867

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/1192fd367a597680ba665be88ed84ff0cf5bb867
https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/1192fd367a597680ba665be88ed84ff0cf5bb867

713 MISPLACED NONREENTRANT MODIFIER
// INFORMATIONAL

Description

Some contracts in-scope are utilizing the ReentrancyGuard from OpenZeppelin for reentrancy
locks (mutex), which is best practice. However, the nonReentrant modifier should be placed before

all other modifiers, to effectively prevent reentrancy on the function's modifiers.

function __StrategyBase_init(
IERC20 baseAsset_,
string memory shareName_,
string memory shareSymbol_,
address feeRecipient_,
uint256 depositlLimit_,
address owner_,
RewardToken[] memory rewardTokens_,
address vault_
) internal initializer nonReentrant {

function addRewardToken(RewardToken calldata rewardToken_) external onlyOwner nonReentrant {

BVSS
AQ:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation

It is recommended to place the nonReentrant modifier before all other modifiers.

Remediation Comment

SOLVED: The Blueprint Finance team has solved the issue as recommended.

Remediation Hash

https://github.com/Blueprint-Finance/sc_earn-vi/pull/152/commits/408b8144acc62d75c3d94bb
ccbff3954e426¢c419

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/408b8144acc62d75c3d94bbcc5ff3954e426c419
https://github.com/Blueprint-Finance/sc_earn-v1/pull/152/commits/408b8144acc62d75c3d94bbcc5ff3954e426c419

7.14 PUSHO AND NEWER OPCODES MIGHT NOT BE
SUPPORTED IN ALL CHAINS

// INFORMATIONAL

Description

Solc compiler version 0.8.20 switches the default target EVM version to Shanghai. The
generated bytecode will include PUSHO opcodes. The recently released Solc compiler version
0.8.25 switches the default target EVM version to Cancun, so it is also important to note that it
also adds-up new opcodes such as TSTORE, TLOAD and MCOPY.

Be sure to select the appropriate EVM version in case you intend to deploy on a chain apart from
Ethereum mainnet, like L2 chains that may not support PUSHO, TSTORE, TLOAD and/or MCOPY,
otherwise deployment of your contracts will fail.

BVSS
AQ:A/AC:L/AX:L/R:N/S:C/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation

It is important to consider the targeted deployment chains before writing immutable contracts
because, in the future, there might exist a need for deploying the contracts in a network that could
not support new opcodes from Shanghai or Cancun EVM versions.

Remediation Comment

ACKNOWLEDGED: The Blueprint Finance team has acknowledged the finding.

https://soliditylang.org/blog/2024/03/14/solidity-0.8.25-release-announcement/
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:C/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:C/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:C/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:C/C:N/A:N/I:N/D:N/Y:N

8. AUTOMATED TESTING

Halborn used automated testing techniques to enhance the coverage of certain areas of the
smart contracts in scope. Among the tools used was Slither, a Solidity static analysis framework.
After Halborn verified the smart contracts in the repository and was able to compile them
correctly into their ABls and binary format, Slither was run against the contracts. This tool can
statically verify mathematical relationships between Solidity variables to detect invalid or
inconsistent usage of the contracts' APIs across the entire code-base.

The security team conducted a comprehensive review of all findings generated by the Slither
static analysis tool.

ddress, uint256, uint256) (1ib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/ERCA626Upgradeable. sol#261-273) uses arbitrary from in transferfrom: SafeERC20.safeTransferfrom(IERC20(ass
hruhtnzt\llltj)n contracts-upgradeable/contracts/token/ERC28/ extensions/ ERCA626Upgradeable . s01#269)
ERC4626. _depos:
rru(tw[REZBrc
Refe:
INFO:
Math.mulDi
— inver
Reference: htt;
INFO:Detectors.
R
Refe:
INFODetects
MockBeradracle

()),caller,addzess(this) assets) (Li

address, uint256, uint256) (1ib/openzeppelin-contracts/contracts/token/ERC20/extensions/ERC4626 .501#239-251) use
/ERCA526 47)

thub. com/ crytic/s1ither/wiki/Detector-Documentation#arbi trary—from-in-transferfrom

s arbitrary from in transferfrom: SafeERC20.safeTransferFrom(IERC20(asset (), caller, address(this),

1ib/openzeppelin-contracts/contracts

256, uint256,uint266) (1ib/openzeppelin-contracts/contracts/utils/math/Math.s01#204-275) has bitwise—xor operator A instead of the exponentiation operator **
(3 * denominator) * 2 (1lib/openzeppelin-contra A L L O
ithub. com/crytic/slither/wiki/Det: tation#il tion

LendFu int266)
ithub. com/crytic/

sre/utils/mocks/MockERC4626PTot ect. s0l#83-86) ignores return value by IERC20(
ither/wiki/Detector-Documentation#unchecked—transfer

)).transfer(msg. sender, anount_)

ro/utils/mocks/MockERCA626Protect . s01#85)

alues (src/utils,
- MockBeradracle.getPric
Reference: htt

INFO:Detectors:
Math.mulDiv(uint266, uint2sé, uint2se) (1ib 1 h/Math
/ twos (Lib/

ey (Pt el (Lib/openzeppelin- cuntnctl/cnntnctsfut)ll/mlth/lhth sorrasr)
Math.muloiv(uint256, uint266, uint256) (1ib 1#204-275) perforns a multiplication on the result of a division:

- denaminator = denominator / twos e ot T s S e o, el)

ocks/MockBeraOracle.so1#10) is never initialized. It is used in:
(src/utils/mocks/MockBeraOracle. sol#38-32)
Jgithub. com/cryt. ither/wiki/Det: tation#uninitia tat ables

uzu&us) perforns a multiplication on the result of a division:
42)

o 4= 2 — * inverse (Lil 18261)
Math. mulD)v(u)ntZSé uine25s, uint256) (Lib/openzeppelin- cnntnr:tlltnntnctl/ut)ll/m-th/mth L) e 0 multiplication on the result of a division:
(Lib/

=

d noninator * inverse (1ib/oponzeppelin- cnntnctl/cnntncti/ut)hfmlthmuth .nmzez)
Mrth. 103 (uint2ss. vanta

,uint256) (1l 1#204-275) perforns o multiplication on the result of a division:
t 1ib,
- inverse += 2 - donominator + inverse lllb/un-nznuu-hn cuntnctl/cuntnct:/ut)lsfmlthlﬂnth 5018263)
Math.mulDiv(uint256,uint256, uint256) (1 204-275) perforns a multiplication on the result of a division:
= Genominator / twos (llb/nnlnzlnn-hn—r:nntnctl/cnntnctl/utllllmth/l{lth sole242)
=2- + inverse (1ib

Math. mulD)v(u)ntZSé uine25s, uint256) (Lib/openzeppelin- cnntnr:tlltnntnctl/ut)ll/m-th/mth 101626&275) u.mmu a multiplication on the result of a division:
b/ 42)

S A e (1ib/openzeppelin- cnntnctl/cnntncti/ut)hfmlth/Huth aonezes)

Math.. nulDJv(u:MZSé uintZ86, uint2se) (1ib 1#204-275) perforns a multiplication on the result of a division:
- tor / twos (1ib/

e e inverse (1ib/oponzeppelin-— cuntnctl/cuntnct:/ut)lsfmlthlﬂnth s018266)
BT G R T (L 1#204-275) perforns a multiplication on the result of a division:
= sk T i (1)blun-nzlnu-l)n-cnntnctl/cnntnctllut)ll/mlthlulth s014245)

sult = low * inverse (14272

Math. inviod uint 256, uint256) (1ib/openzeppelin— cnntnctl/cnntncti/ut)ll/mlth/M-th TRl B O Gl 6 i R 6 O G

= 37)

remainder (

- (gcd, remainder) = (remainder,gcd — remainder * quotient) (1ib/openzeppelin- cnntr-ctl/cnntnr:tl/ut)ll/m-th/l‘llth 501#339-346)
Reference: https://github.com/crytic/slither/wiki
INFO:

alAssets() (sre/strategies/CurveV2/CurveVaStrategy.sol#92-96) uses a dangerous strict equality:
e e G e)

at rategy.sol#80-86) uses a dangerous strict equality:
o (sme/sratagios) Curuov2 /Curvevaserstogy sol082)
Pend1ov2stra -ny tnt-lnntl() (src/strategies/Pendlev2/PendleVastrategy. s01#102-108) uses a dangerous strict equality:

@ (src/strategies/PendleV2/PendleVaStrategy.sol#104)
ST S) (oo o Py /e A e iy A7) O 0 ST s CouTihie
0 (src/strategies/PendleV2/Pendlevastrategy.sol#8

ub. com/ crytic/slither/wiki, ict-equalities

) is a local variable never initialized
e e T WD o o A o so e s O ED) i e e

) is a local v ever in
Curv)3 (s1c/strategi, Tategy- -nums) is a local ver initialized
«) is a local variable never initialized

Str-hgyhl harvestRewards (bytes) (src/strategies/StrategyBase.sol#345-416) ignores retuzn value by TokenHel),_vault, rewardsToVault, false) (szc/strategies/StrategyBase.sol#374)

CurvevaStrategy. nrutucull)-nm)t(u)ntzsé u)ntZSé) (lrc/ltntln)-i/Cu!v-VZ/Curv-\lZStntnny BT) ST o WD 1) MR) e R B E W, LG (el i e el el e a1)

Pendl. 01#83-96) ignores return value by (netTokenOut) = leT)) (sre/ Pendlev2/Pendl 01#89-95)

1-vZStnt-ny tﬂtllAlntl() (1rc/ltntln)u/F-ndllVZ/P-nthZStnt-gy “014162-108) ignores return valus by (netTokenout, Nane, None.None, Nons None, None, None) = et nmv.uqma)tys;nnl.mk.nstm:(.adnu(mrk.t) IpBalance,aseet()) (s1e/strategtes/Pendlova pendl evast
501#105-185)

-_protocolDeposit(uint256,uint256) (src/strategies/PendleV2/Pendlev2Strategy.sol#122-146) ignores return value by (netLpOut,netYtOut,None,None) = routerStatic.addLiquiditySing: tatic() ()),amount_) (src/strategies/Pendlevz/
-501#125-126)
Pendlev2Strategy . Dl’ntncnll)-pnnt(u)nt?Eé,ulntZSé) (u'c/:tnnn)n/P-ndl-VZIP-ndl-vZStnt-ny 501#122-146) ignores rsturn value by router.addLiquiditys

t(address(this)), minLpout, min¥tOut, input) (src/strategies/Pendlev2/Pendlev2strategy.sol#130)
protocolD 501#122-146) ignores return value by (estimatedTok None, Nane, Nona, None) = ,ytBal +0) (szc
-ndl-vz/P-ndl-sttnt-ny e ué)
PendlevaStrategy ._protocolDeposit(uint256,uint256) (16v2/Pendl -501#122-146) ignores return valus by (netTokenOut,None,None) = rout; oken(,ytBalance, 1) (d1ev2/Pe
01#141-142)
-_protocelwithdraw(uint256,uint256) (sre/strategies/PendleVa/Pendlevastrategy.sol#152-164) ignores return value by (None, None, Nona, None, None Nane, None) = routerStatic.removeliquiditySingleTokenStati), 1pBal t() (sre/strategies
V2Strategy.sol#156-167)

Pendlev2Strategy . _protocolWithdraw(uint256,uint256) (src/strategies/PendleVv2/Pendlev2Strategy.sol#152-164) ignores return value by router.removeliquiditySingleToken(address(this),address(market),netTokenIn,output,createEnptyLinitOrderData()) (src/strategies/Pendlevz/Pendlevastr
ategy.sol#160-162)

TS T S T W ST) (O o D YRR, o L) Ry 0 O 5 o 32 A ol BT) (et DU R P S T DA 2
tips://github. com/crytic/slither/wiki/Detector-Docunentation#unused-return
nalyzed (65 contracts with 58 detectors), 34 result(s) found

After careful examination and consideration of the flagged issues, it was determined that within
the project's specific context and scope, all were false positives or irrelevant.

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or
immediately following any material changes to the codebase, whichever comes first. This approach is crucial for
maintaining the project’s integrity and addressing potential vulnerabilities introduced by code modifications.

