/| Security Assessment 09.23.2025 - 09.30.2025

Earn V2 Core - Async

Implementation
Blueprint Finance

=/\LL_BLIRIN

Earn V2 Core - Async impilementation - Blueprint
Finance

Prepared by: gl HALBORN
Last Updated 10/10/2025

Date of Engagement: September 23rd, 2025 - September 30th, 2025

Summary

100°% O OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALLFINDINGS CRITICAL HIGH MEDIUM LOW INFORMATIONAL
11 (1 o o 1 10

TABLE OF CONTENTS

1. Introduction

2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope

6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Unfollowed checks-effects-interactions pattern

7.2 Missing input validation

7.3 Insufficient margin between accounting validity and cooldown periods
7.4 Admin can bypass accounting guard via unpauseandadjusttotalassets
7.5 Rounding mode mismatch in epoch asset reservation logic

7.6 Incorrect storage slot constant declaration

7.7 Lack of recipient validation in fee splitter enables misleading accounting
7.8 Stale per-epoch totalrequestedshares value after processing

7.9 Reentrancyguardupgradeable initializer not invoked

7.10 Typo in the code

7.11 Redundant code

Blueprint Finance engaged Halborn to perform a security assessment of their smart contracts from
September 23rd, 2025 to September 30th, 2025. The assessment scope was limited to the smart

contracts provided to Halborn. Commit hashes and additional details are available in the Scope section of
this report.

The Blueprint Finance codebase in scope consists of smart contracts implementing an upgradeable
vault system with asynchronous withdrawal queuing, multi-strateqy asset allocation, fee splitting, and
privileged strategy management.

2. Assessment Summary

Halborn was allocated 6 days for this engagement and assigned 1 full-time security engineer to
conduct a comprehensive review of the smart contracts within scope. The engineer is an expert in
blockchain and smart contract security, with advanced skills in penetration testing and smart contract
exploitation, as well as extensive knowledge of multiple blockchain protocols.

The objectives of this assessment are to:

« ldentify potential security vulnerabilities within the smart contracts.
« \Verify that the smart contract functionality operates as intended.

In summary, Halborn identified several areas for improvement to reduce the likelihood and impact of
security risks, which were partially addressed by the Blueprint Finance team. The primary
recommendations were:

e Reorder the logic in claimUsersBatch() to clear the user's claimable state before
performing the external transfer.

« Enforce a minimum margin between accountingValidityPeriod and cooldownPeriod in
both setter functions to ensure a robust and predictable update window.

« Restrict unpauseAndAdjustTotalAssets() to only allow adjustments that pass the
same validation as adjustTotalAssets(), or remove the function if not strictly
necessary.

3. Test Approach And Methodology

Halborn conducted a combination of manual code review and automated security testing to balance
efficiency, timeliness, practicality, and accuracy within the scope of this assessment. While manual
testing is crucial for identifying flaws in logic, processes, and implementation, automated testing
enhances coverage of smart contracts and quickly detects deviations from established security best
practices.

The following phases and associated tools were employed throughout the term of the assessment:

« Research into the platform's architecture, purpose and use.

o Manual code review and walkthrough of smart contracts to identify any logical issues.

« Comprehensive assessment of the safety and usage of critical Solidity variables and functions
within scope that could lead to arithmetic-related vulnerabilities.

« Local testing using custom scripts (Foundry).

« Fork testing against main networks (Foundry).

« Static security analysis of scoped contracts, and imported functions (Slither).

4. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity

Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means

by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

41 EXPLOITABILITY

ATTACK ORIGIN [AO).

Captures whether the attack requires compromising a specific account.
ATTACK COST (AC).

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

ATTACK COMPLEXITY (AX]):

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory

challenges.

METRICS:

EXPLOITABILITY METRIC (ME) METRIC VALUE NUMERICAL VALUE

.. Arbitrary (AO:A) 1

Attack Origin (AO) Specific (AO:S) 0.2
Low (AC:L) 1

Attack Cost (AC) Medium (AC:M) 0.67

High (AC:H) 0.33

EXPLOITABILITY METRIC (ME) METRIC VALUE NUMERICAL VALUE

Low (AX:L) 1
Attack Complexity (AX) Medium (AX:M) 0.67
High (AX:H) 0.33

Exploitability F is calculated using the following formula:

E:I_[me

4.2 IMPACT
CONFIDENTIALITY (C):

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

INTEGRITY (I):

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVAILABILITY ([(A):

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

DEPOSIT (D):

Measures the impact to the deposits made to the contract by either users or owners.
YIELD (Y):

Measures the impact to the yield generated by the contract for either users or owners.

METRICS.:
IMPACT METRIC (M) METRIC VALUE NUMERICAL VALUE
None (C:N) 0
Low (C:L) 0.25
Confidentiality (C) Medium (C:M) 0.5
High (C:H) 0.75
Critical (C:C) 1

IMPACT METRIC (M7) METRIC VALUE NUMERICAL VALUE
None (I:N) 0
Low (I:L) 0.25
Integrity (1) Medium (I:M) 0.5
High (I:H) 0.75
Critical (I:C) 1
None (A:N) 0
Low (A:L) 0.25
Availability (A) Medium (A:M) 0.5
High (A:H) 0.75
Critical (A:C) 1
None (D:N) 0
Low (D:L) 0.25
Deposit (D) Medium (D:M) 0.5
High (D:H) 0.75
Critical (D:C) 1
None (Y:N) 0]
Low (Y:L) 0.25
Yield (Y) Medium (Y:M) 0.5
High (Y:H) 0.75
Critical (Y:C) 1

Impact I is calculated using the following formula:

> my — max(my)
4

I = max(my) +

4.3 SEVERITY COEFFICIENT
REVERSIBILITY [R):

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

SCOPE (S):

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

METRICS:
SEVERITY COEFFICIENT (C) COEFFICIENT VALUE NUMERICAL VALUE
None (R:N) 1
Reversibility () Partial (R:P) 0.5
Full (R:F) 0.2
3 (Changed (S:C) 1.25
cope (8) Unchanged (S:U) 1

Severity Coefficient C'is obtained by the following product:

The Vulnerability Severity Score S is obtained by:

The score is rounded up to 1 decimal places.

C =rs

S = min(10, EIC % 10)

SEVERITY

SCORE VALUE RANGE

45-6.9

REPOSITORY

(a) Repository: earn-v2-core
(b) Assessed Commit ID: c02454d

(c) Items in scope:

« src/common/UpgradeableVault.sol

« src/implementation/ConcreteAsyncVaultimpl.sol

« src/implementation/ConcreteStandardVaultimpl.sol
« lib/AsyncVaultHelperLib.sol

« lib/ERC20Lib.sol

« lib/storage/ConcreteAsyncVaultimplStorageLib.sol
« periphery/auxiliary/TwoWayFeeSplitter.sol

« periphery/lib/BaseStrategyStoragelLib.sol

« periphery/lib/MultisigStrategyStorageLib.sol

« periphery/lib/PeripheryRolesLib.sol

« periphery/lib/PositionAccountingLib.sol

« periphery/lib/PositionAccountingStorageLib.sol

« periphery/lib/SimpleStrategyStorageLib.sol

« periphery/strategies/BaseStrategy.sol

« periphery/strategies/MultisigStrategy.sol

« periphery/strategies/SimpleStrategy.sol

Out-of-Scope: Third party dependencies and economic attacks.

REMEDIATION COMMIT ID:

« 01a030b
« 92b192f

Out-of-Scope: New features/implementations after the remediation commit IDs.

6. ASSESSMENT SUMMARY & FINDINGS OVERVIEW

CRITICAL HIGH MEDIUM LOW
o o o 1

https://github.com/Blueprint-Finance/earn-v2-core
https://github.com/Blueprint-Finance/earn-v2-core/commit/c02454de878b3837dc9eb90270f298b1dbe038ec
https://github.com/Blueprint-Finance/earn-v2-core/commit/01a030bedbd4315141b44e4a6f523dd590a54403
https://github.com/Blueprint-Finance/earn-v2-core/commit/92b192fce8c39655eefbd38feff4b4aa7e15de63

INFORMATIONAL

SECURITY ANALYSIS

UNFOLLOWED CHECKS-EFFECTS-INTERACTIONS
PATTERN

MISSING INPUT VALIDATION

INSUFFICIENT MARGIN BETWEEN ACCOUNTING VALIDITY

AND COOLDOWN PERIODS

ADMIN CAN BYPASS ACCOUNTING GUARD VIA
UNPAUSEANDADJUSTTOTALASSETS

ROUNDING MODE MISMATCH IN EPOCH ASSET
RESERVATION LOGIC

INCORRECT STORAGE SLOT CONSTANT DECLARATION

LACK OF RECIPIENT VALIDATION IN FEE SPLITTER
ENABLES MISLEADING ACCOUNTING

STALE PER-EPOCH TOTALREQUESTEDSHARES VALUE
AFTER PROCESSING

REENTRANCYGUARDUPGRADEABLE INITIALIZER NOT
INVOKED

RISK LEVEL

INFORMATIONAL

INFORMATIONAL

INFORMATIONAL

INFORMATIONAL

INFORMATIONAL

INFORMATIONAL

INFORMATIONAL

INFORMATIONAL

REMEDIATION DATE

SOLVED - 10/03/2025

PARTIALLY SOLVED -
10/03/2025

SOLVED - 10/02/2025

ACKNOWLEDGED -
10/03/2025

SOLVED - 10/03/2025

SOLVED - 10/03/2025

SOLVED - 10/03/2025

ACKNOWLEDGED -
10/03/2025

SOLVED - 10/03/2025

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

TYPO IN THE CODE INFORMATIONAL SOLVED - 10/03/2025

REDUNDANT CODE INFORMATIONAL SOLVED - 10/03/2025

7. FINDINGS 8 TECH DETAILS

7.1 UNFOLLOWED CHECKS-EFFECTS-INTERACTIONS
PATTERN

/] LOW

Description

The claimUsersBatch() functionin AsyncVaultHelperLib processes batch claims for users in a given
epoch. However, it performs the external asset transfer (IERC20(asset).safeTransfer(user,

assets)) before clearing the user's claimable state (userEpochRequests[user] [epochID] = @). This
ordering does not follow the checks-effects-interactions pattern, which is a best practice to prevent
reentrancy vulnerabilities.

While the current implementation is protected by role-based access and the underlying asset is assumed
to be a standard ERC20, future upgrades or integration with tokens supporting hooks (e.g., ERC777) could
expose the contract to reentrancy risks, potentially allowing a user to double-claim assets.

BVSS

AQ:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:C (2.5)

Recommendation

Reorder the logic in claimUsersBatch() to clear the user's claimable state before performing the
external transfer.

Remediation Comment

SOLVED: The Blueprint Finance team solved this finding in the specified commit by following the
mentioned recommendation.

Remediation Hash

https://github.com/Blueprint-Finance/earn-v2-core/commit/01a030bedbd4315141b44e4a6f523dd590a
54403

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:C
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:C
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:C
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:C/Y:C
https://github.com/Blueprint-Finance/earn-v2-core/commit/01a030bedbd4315141b44e4a6f523dd590a54403
https://github.com/Blueprint-Finance/earn-v2-core/commit/01a030bedbd4315141b44e4a6f523dd590a54403

7.2 MISSING INPUT VALIDATION
// INFORMATIONAL

Description

Throughout the codebase, there are several instances where input values are assigned without proper
validation. Failing to validate inputs before assigning them to state variables or using them in protocol
logic can lead to unexpected system behavior, weakened safety guarantees, or even complete failure.

Instances of this issue include:

e In PositionAccountingLib.setMaxAccountingChangeThreshold() , the
maxAccountingChangeThreshold_ parameter is assigned directly without checking that it is less
than or equal to BASIS_POINTS (10,000).

e In PositionAccountinglLib.setCooldownPeriod() , the cooldownPeriod_ parameter is not
validated for a sensible minimum value (e.g., greater than zero), which could allow disabling cooldown
protection.

o In ConcreteAsyncVaultImpl.toggleQueueActive() , there is no validation to prevent disabling
the queue while there are pending requests, which could lead to user confusion or inconsistent
withdrawal behavior.

« Inmanagement and performance fee setters (updateManagementFee() ,
updatePerformanceFee()), there are no hard-coded upper bounds on fee rates, allowing privileged
roles to set excessive fees and dilute user shares.

e In PositionAccountingStoragelLib.initialize() , the maxAccountingChangeThreshold_
parameter is assigned directly without checking that it is less than or equal to BASIS_POINTS
(10,000).

e In PositionAccountingStoragelLib.initialize() ,the accountingValidityPeriod_
parameter is not validated to ensure it is greater than cooldownPeriod_, which can lead to
immediate expiry or liveness issues.

o In TwoWayFeeSplitter.initialize() ,the feeType parameter is not validated or restricted to a
known set of values, which can lead to inconsistent or meaningless fee type labeling across
deployments.

BVSS
AQ:S/AC:L/AX:L/R:N/S:U/C:N/A:M/1:M/D:N/Y:N (1.3)

Recommendation

Add proper validation to ensure that input values are within expected ranges and that addresses are not
the zero address.

Remediation Comment

PARTIALLY SOLVED: The Blueprint Finance team partially solved this finding in the specified commit by
adding input validation to several of the aforementioned instances.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:M/D:N/Y:N

Remediation Hash

https://github.com/Blueprint-Finance/earn-v2-core/commit/01a030bedbd4315141b44e4a6f523dd590a
54403

7.3 INSUFFICIENT MARGIN BETWEEN ACCOUNTING
VALIDITY AND COOLDOWN PERIODS

/] INFORMATIONAL

Description

The setAccountingValidityPeriod() and setCooldownPeriod() functionsin
PositionAccountingLib enforce that accountingValidityPeriod must be strictly greater than
cooldownPeriod . However, the contract does not enforce a minimum margin between these two values.

If accountingValidityPeriod is set only slightly greater than cooldownPeriod (e.g., by 1 second),

there will be an extremely narrow window to perform accounting updates after the cooldown expires. This
fragility can lead to missed updates due to block time variance or transaction delays, potentially causing
the protocol to revert with AccountingValidityPeriodExpired() even when the cooldown has passed.

For example, if cooldownPeriod is set to 100 seconds and accountingValidityPeriod to 101
seconds, there is only a 1-second window to perform the next update after cooldown, which is
impractical and unreliable.

BVSS
AQ:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N (1.0)

Recommendation

Enforce a minimum margin between accountingValidityPeriod and cooldownPeriod in both setter
functions to ensure a robust and predictable update window.

Remediation Comment

SOLVED: The Blueprint Finance team solved this finding in the specified commit by following the
mentioned recommendation.

Remediation Hash

https://github.com/Blueprint-Finance/earn-v2-core/commit/92b192fce8c39655eefbd38feff4b4aa7eibd
€63

https://github.com/Blueprint-Finance/earn-v2-core/commit/01a030bedbd4315141b44e4a6f523dd590a54403
https://github.com/Blueprint-Finance/earn-v2-core/commit/01a030bedbd4315141b44e4a6f523dd590a54403
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://github.com/Blueprint-Finance/earn-v2-core/commit/92b192fce8c39655eefbd38feff4b4aa7e15de63
https://github.com/Blueprint-Finance/earn-v2-core/commit/92b192fce8c39655eefbd38feff4b4aa7e15de63

7.4 ADMIN CAN BYPASS ACCOUNTING GUARD VIA
UNPAUSEANDADJUSTTOTALASSETS

// INFORMATIONAL

Description

The MultisigStrategy.unpauseAndAdjustTotalAssets() function allows an address with the
STRATEGY_ADMIN role to unpause the strategy and directly adjust the reported total assets by any
amount, without passing through the accounting validation logic enforced by
PositionAccountinglLib.isValidAccountingChange() . This bypasses the intended controls on asset
reporting and nonce/timestamp advancement.

BVSS
AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/1:M/D:N/Y:N (1.0)

Recommendation

Restrict unpauseAndAdjustTotalAssets() to only allow adjustments that pass the same validation as
adjustTotalAssets() , or remove the function if not strictly necessary.

Remediation Comment

ACKNOWLEDGED: The Blueprint Finance team made a business decision to acknowledge this finding and
not alter the contracts.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N

7.5 ROUNDING MODE MISMATCH IN EPOCH ASSET
RESERVATION LOGIC

// INFORMATIONAL

Description

The ConcreteAsyncVaultImpl contract is designed to reserve assets during epoch processing to
guarantee that all user withdrawal claims can be fulfilled. According to the technical documentation
(ConcreteAsyncVaultImpl-doc.md, section 7.2), the calculation for reserving assets should use
rounding up (Math.Rounding.Ceil) when converting shares to assets.

However, the actual implementation in the contract uses rounding down (Math.Rounding.Floor) when
calculating the share price and, by extension, the reserved assets.

This discrepancy means that, for each epoch, a small amount of value may be left unreserved, causing
users to receive slightly less than their fair share when claiming withdrawals. Over time, this dust can
accumulate in the vault, diverging from the intended behavior described in the documentation.

BVSS
AQ:A/AC:L/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (0.8)

Recommendation

Update the implementation to use Math.Rounding.Ceil when reserving assets for processed epochs,
aligning the code with the documented specification.

Alternatively, if the current behavior is preferred, update the documentation to reflect the use of rounding
down.

Remediation Comment

SOLVED: The Blueprint Finance team solved this finding in the specified commit by following the
mentioned recommendation and updating the documentation accordingly.

Remediation Hash

https://github.com/Blueprint-Finance/earn-v2-core/commit/92b192fce8c39655eefbd38feff4b4aa7el5d
€63

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://github.com/Blueprint-Finance/earn-v2-core/commit/92b192fce8c39655eefbd38feff4b4aa7e15de63
https://github.com/Blueprint-Finance/earn-v2-core/commit/92b192fce8c39655eefbd38feff4b4aa7e15de63

7.6 INCORRECT STORAGE SLOT CONSTANT DECLARATION
// INFORMATIONAL

Description

The ConcreteAsyncVaultImplStorageLib library defines the storage slot constant
ConcreteAsyncVaultImplStorageLocation as:

/// @dev keccak256(abi.encode(uint256(keccak256("concrete.storage.ConcreteAsyncVaultImplStorage")) -
bytes32 private constant ConcreteAsyncVaultImplStoragelocation =
0xd3b5f67b5a9bb5c5a5b5c5a5b5c5a5b5c5a5b5c5a5b5c5a5b5c5a5b5¢5a5b500;

However, the correct value, as computed by the documented formula
keccak256(abi.encode(uint256(keccak256("concrete.storage.ConcreteAsyncVaultImplStorage"
)) — 1)) & ~bytes32(uint256(0xff))

using Foundry's Chisel tool is
0xada5b60617944319310c49c0f9f30d6272793a991bd2b9c3db8049867746700 :

keccak256(abi.encode((keccak256() -1)) &~ ((exff))

Hex: Bxada5h686f7944319310c49c8f9f38d6272793a991bd2b9c3db8849867746768
Hex (full word): BxBada5b6B86f7944319318c49cBFf9F38d6272793a991bd2b9c3db8B49867746760
Decimal: 4908931804766348126388321727457957929239196938635829922817049424830349469440

While this does not currently break storage access if the incorrect slot is used consistently throughout
the codebase, it may cause confusion for future maintainers or integrators who expect the slot to match
the documented formula. This inconsistency could lead to integration issues or errors if other contracts
or tools rely on the documented calculation.

BVSS
AQ:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:L/D:N/Y:N (0.8)

Recommendation

Update the ConcreteAsyncVaultImplStoragelLocation constant to match the documented formula.

Remediation Comment

SOLVED: The Blueprint Finance team solved this finding in the specified commit by following the
mentioned recommendation.

Remediation Hash

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:L/D:N/Y:N

https://github.com/Blueprint-Finance/earn-v2-core/commit/01a030bedbd4315141b44e4a6f523dd590a
54403

7.7 LACK OF RECIPIENT VALIDATION IN FEE SPLITTER
ENABLES MISLEADING ACCOUNTING

// INFORMATIONAL

Description

The TwoWayFeeSplitter contract allows either the mainRecipient or secondaryRecipient to be set
to the splitter contract’s own address (address(this)), or for both recipients to be set to the same
address.

When this occurs, calling distributeFees() will transfer vault tokens to the splitter itself or to the
same address twice, leaving the contract’s balance unchanged and/or inflating the feesDistributed
metric. This can mislead off-chain systems or dashboards that rely on these metrics.

BVSS
AQ:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (0.5)

Recommendation

Add checks to prevent either recipient from being set to address(this) and to ensure that
mainRecipient and secondaryRecipient are not identical.

Remediation Comment

SOLVED: The Blueprint Finance team solved this finding in the specified commit by following the
mentioned recommendation.

Remediation Hash

https://github.com/Blueprint-Finance/earn-v2-core/commit/01a030bedbd4315141b44e4a6f523dd590a
54403

https://github.com/Blueprint-Finance/earn-v2-core/commit/01a030bedbd4315141b44e4a6f523dd590a54403
https://github.com/Blueprint-Finance/earn-v2-core/commit/01a030bedbd4315141b44e4a6f523dd590a54403
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://github.com/Blueprint-Finance/earn-v2-core/commit/01a030bedbd4315141b44e4a6f523dd590a54403
https://github.com/Blueprint-Finance/earn-v2-core/commit/01a030bedbd4315141b44e4a6f523dd590a54403

7.8 STALE PER-EPOCH TOTALREQUESTEDSHARES VALUE
AFTER PROCESSING

// INFORMATIONAL

Description

AsyncVaultHelperLib.processEpoch() burns requestingShares and sets epochPricePerShare
but leaves totalRequestedSharesPerEpoch[epochID] untouched. Post-processing logic never uses it,
yet off-chain indexers may misinterpret the non-zero value as still-queued requests.

BVSS
AQ:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (0.5)

Recommendation

Set totalRequestedSharesPerEpoch[epochID] = 0 .

Remediation Comment

ACKNOWLEDGED: The Blueprint Finance team made a business decision to acknowledge this finding
and not alter the contracts.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N

7.9 REENTRANCYGUARDUPGRADEABLE INITIALIZER NOT
INVOKED

// INFORMATIONAL

Description

The TwoWayFeeSplitter contract inherits from ReentrancyGuardUpgradeable but does not call
__ReentrancyGuard_init() inits initialize() function.

While this omission does not currently impact the contract's security or functionality, it deviates from
OpenZeppelin's recommended upgradeable contract initialization pattern.

BVSS
AQ:A/AC:L/AX:H/R:F/S:U/C:N/A:N/I:L/D:N/Y:N (0.2)

Recommendation

Add a call to __ReentrancyGuard_init() inthe initialize() function.

Remediation Comment

SOLVED: The Blueprint Finance team solved this finding in the specified commit by following the
mentioned recommendation.

Remediation Hash

https://github.com/Blueprint-Finance/earn-v2-core/commit/01a030bedbd4315141b44e4a6f523dd590a
54403

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://github.com/Blueprint-Finance/earn-v2-core/commit/01a030bedbd4315141b44e4a6f523dd590a54403
https://github.com/Blueprint-Finance/earn-v2-core/commit/01a030bedbd4315141b44e4a6f523dd590a54403

7.10 TYPO IN THE CODE
// INFORMATIONAL

Description

In the ConcreteAsyncVaultImplStorage struct of the ConcreteAsyncVaultImplStorageLib library,
there is a typo, where the word Unclaimed is misspelled as Unlcaimed. The same case can be found in
the pastEpochsUnlcaimedAssets() function of the ConcreteAsyncVaultImpl contract.

While this typo does not affect the functionality of the code, it can make the codebase harder to read
and understand.

BVSS
AQ:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation

It is recommended to fix all typos to improve the readability of the codebase.

Remediation Comment

SOLVED: The Blueprint Finance team solved this finding in the specified commit by following the
mentioned recommendation.

Remediation Hash

https://github.com/Blueprint-Finance/earn-v2-core/commit/01a030bedbd4315141b44e4a6f523dd590a
54403

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://github.com/Blueprint-Finance/earn-v2-core/commit/01a030bedbd4315141b44e4a6f523dd590a54403
https://github.com/Blueprint-Finance/earn-v2-core/commit/01a030bedbd4315141b44e4a6f523dd590a54403

7.11 REDUNDANT CODE
// INFORMATIONAL

Description

The ConcreteAsyncVaultImpl._executeWithdraw() function contains two identical checks:
require(shares > @, ZeroShares()); .0One at the start and another inside the if
($.isQueueActive) block. Since the first check already reverts if shares == 0, the second is
redundant and unreachable.

BVSS
AOQ:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation

Remove the second require(shares > @, ZeroShares()); inside the if ($.isQueueActive) block
to simplify the code.

Remediation Comment

SOLVED: The Blueprint Finance team solved this finding in the specified commit by following the
mentioned recommendation.

Remediation Hash

https://github.com/Blueprint-Finance/earn-v2-core/commit/01a030bedbd4315141b44e4a6f523dd590a
54403

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://github.com/Blueprint-Finance/earn-v2-core/commit/01a030bedbd4315141b44e4a6f523dd590a54403
https://github.com/Blueprint-Finance/earn-v2-core/commit/01a030bedbd4315141b44e4a6f523dd590a54403

